Wiener klinische Wochenschrift

, Volume 122, Issue 21–22, pp 607–613 | Cite as

The National Austrian Newborn Screening Program – Eight years experience with mass spectrometry. Past, present, and future goals

  • David C. Kasper
  • Rene Ratschmann
  • Thomas F. Metz
  • Thomas P. Mechtler
  • Dorothea Möslinger
  • Vassiliki Konstantopoulou
  • Chike B. Item
  • Arnold Pollak
  • Kurt R. Herkner
Original article

Summary

BACKGROUND: The National Austrian Newborn Screening Program for inherited metabolic and endocrinologic disorders was introduced in 1966. The program continuously evolved by expanding the screening panel from phenylketonuria and galactosemia to congenital hypothyroidism, biotinidase deficiency, cystic fibrosis, and congenital adrenal hyperplasia. In 2002, the introduction of tandem mass spectrometry (MS/MS) substantially increased the number of detectable inborn errors of metabolism and now includes disorders of fatty acid oxidation, organic acidurias and various disorders of amino acid metabolism. OBJECTIVE: In this study we report our eight years experience with MS/MS in Austria and give an overview of the incidence of diseases, organization, updates on methods and current development and future aspects. METHODS: A total of 622,489 newborns were screened by MS/MS for more than 20 diseases in Austria between April 2002 and December 2009. Dried blood spot samples were collected and sent to the National Laboratory for Newborn Screening located at the Medical University of Vienna, Vienna, Austria. RESULTS: The resulting overall prevalence of inherited metabolic disorder identified by MS/MS was 1:2855, including 125 newborns with amino acidemias (1:4,980), 46 with organic acidurias (1:13,532), and 47 with fatty acid oxidation disorders (1:13,244). CONCLUSION: The introduction of MS/MS technology in Austria significantly increased the detection of inherited metabolic disorders that were previously not covered. A primary goal is the continuous effort by developing second-tier strategies with the inclusion of more specific markers in order to minimize the risk of false-negatives and to improve the positive predictive value of screening results. Early recognition of these disorders enables diagnosis and treatment before the onset of symptoms.

Keywords

National Austrian Newborn Screening Program Tandem mass spectrometry Inherited metabolic disorders Inborn errors of metabolism 

Österreichisches Neugeborenenscreening Programm – Erfahrung über acht Jahre Massenspektrometrie. Vergangenheit, Gegenwart und zukünftige Ziele

Zusammenfassung

HINTERGRUND: Im Jahre 1966 wurde das österreichweite Neugeborenen Screening Programm zur Erkennung von angeborenen Stoffwechselerkrankungen und endokrinen Störungen eingeführt. Die Liste der gescreenten Erkrankungen wurde sukzessive erweitert und umfasst neben der Phenylketonurie und Galaktosämie, auch angeborene Hypothyreose, Biotinidasedefizienz, Cystische Fibrose und Adrenogenitales Syndrom. Im Jahre 2002 wurde die Tandem Massenspektrometrie (MS/MS) eingeführt. Somit konnte die Anzahl der angeborenen Stoffwechselerkrankungen deutlich erhöht werden und umfasst nun Fettsäureoxidationsstörungen, Organoazidopathien und Aminosäurenabbaustörung. FRAGESTELLUNG: In dieser Studie berichten wir über die achtjährige Erfahrung mit MS/MS in Österreich und geben einen Überblick über die Inzidenz der Erkrankungen, Organisation, methodische Entwicklungen, und zeigen aktuelle und zukünftige Entwicklungen. METHODEN: Zwischen April 2002 und Dezember 2009 wurden insgesamt 622.489 Neugeborene in Österreich mittels MS/MS auf mehr als 20 Erkrankungen gescreent. Dazu wurden Trockenblutkarten gesammelt und an das Neugeborenen Screening Laboratorium, der Universitätsklink für Kinder-und Jugendheilkunde, Medizinischen Universität Wien in Österreich, geschickt. ERGEBNISSE: Die Prävalenz aller angeborenen Stoffwechselerkrankungen mittels MS/MS war 1:2855, und umfasste 125 Neugeborene mit Aminoazidopathien (1:4890), 46 mit Organoazidopathien (1:13.532) und 47 mit Fettsäureoxidationsstörungen (1:13.244). SCHLUSSFOLGERUNG: Die Einführung der MS/MS Technologie in Österreich erhöhte signifikant die Detektion von angeborenen Stoffwechselerkrankungen vor allem jener die früher nicht präventiv erfasst wurde. Das Ziel ist die kontinuierliche Entwicklung von "second-tier" Strategien mittels spezifischer Marker um das Risiko von falsch-negativen Ergebnissen zu minimieren und den positiven prädiktiven Wert von Screeningergebnissen zu erhöhen. Die frühzeitige Erkennung ermöglicht erst die Diagnose und die Behandlung dieser Erkrankungen bevor Symptome auftreten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 2003;49(11):1797–817CrossRefPubMedGoogle Scholar
  2. Chace DH, et al. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin Chem 1993;39(1):66–71PubMedGoogle Scholar
  3. Jones PM, Bennett MJ. The changing face of newborn screening: diagnosis of inborn errors of metabolism by tandem mass spectrometry. Clin Chim Acta 2002;324(1–2):121–8CrossRefPubMedGoogle Scholar
  4. Wilcken B, et al. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 2003; 348(23):2304–12CrossRefPubMedGoogle Scholar
  5. Khoury MJ, McCabe LL, McCabe ER. Population screening in the age of genomic medicine. N Engl J Med 2003;348(1):50–8CrossRefPubMedGoogle Scholar
  6. Schulze A, et al. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry:results, outcome, and implications. Pediatrics 2003;111(6 Pt 1):1399–406CrossRefPubMedGoogle Scholar
  7. Schulze A, Mayatepek E, Hoffmann GF. Evaluation of 6-year application of the enzymatic colorimetric phenylalanine assay in the setting of neonatal screening for phenylketonuria. Clin Chim Acta 2002;317(1–2):27–37CrossRefPubMedGoogle Scholar
  8. Fingerhut R, Olgemoller B. Newborn screening for inborn errors of metabolism and endocrinopathies: an update. Anal Bioanal Chem 2009;393(5):1481–97CrossRefPubMedGoogle Scholar
  9. la Marca G, et al. Progress in expanded newborn screening for metabolic conditions by LC-MS/MS in Tuscany: update on methods to reduce false tests. J Inherit Metab Dis 2008Google Scholar
  10. la Marca G, et al. The inclusion of succinylacetone as marker for tyrosinemia type I in expanded newborn screening programs. Rapid Commun Mass Spectrom 2008;22(6): 812–8CrossRefPubMedGoogle Scholar
  11. Sander J, et al. Newborn screening for hepatorenal tyrosinemia: tandem mass spectrometric quantification of succinylacetone. Clin Chem 2006;52(3):482–7CrossRefPubMedGoogle Scholar
  12. Turgeon C, et al. Combined newborn screening for succinylacetone, amino acids, and acylcarnitines in dried blood spots. Clin Chem 2008;54(4):657–64CrossRefPubMedGoogle Scholar
  13. Haberle J, et al. Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol Genet Metab 2003;80(3):302–6CrossRefPubMedGoogle Scholar
  14. Scaglia F, Lee B. Clinical, biochemical, and molecular spectrum of hyperargininemia due to arginase I deficiency. Am J Med Genet C Semin Med Genet 2006;142C(2):113–20CrossRefPubMedGoogle Scholar
  15. Liebig M, et al. Neonatal screening for very long-chain acyl-coA dehydrogenase deficiency: enzymatic and molecular evaluation of neonates with elevated C14:1-carnitine levels. Pediatrics 2006;118(3):1065–9CrossRefPubMedGoogle Scholar
  16. Spiekerkoetter U, et al. Tandem mass spectrometry screening for very long-chain Acyl-CoA dehydrogenase deficiency: the value of second-Tier enzyme testing. J Pediatr 2010Google Scholar
  17. Schimmenti LA, et al. Expanded newborn screening identifies maternal primary carnitine deficiency. Mol Genet Metab 2007;90(4):441–5CrossRefPubMedGoogle Scholar
  18. Frazier DM, et al. The tandem mass spectrometry newborn screening experience in North Carolina: 1997–2005. J Inherit Metab Dis 2006;29(1):76–85CrossRefPubMedGoogle Scholar
  19. Kolker S, et al. Guideline for the diagnosis and management of glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type I). J Inherit Metab Dis 2007;30(1):5–22CrossRefPubMedGoogle Scholar
  20. Dionisi-Vici C, et al. 'Classical' organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis 2006;29(2–3):383–9CrossRefPubMedGoogle Scholar
  21. la Marca G, et al. Rapid 2nd-tier test for measurement of 3-OH-propionic and methylmalonic acids on dried blood spots: reducing the false-positive rate for propionylcarnitine during expanded newborn screening by liquid chromatography-tandem mass spectrometry. Clin Chem 2007;53(7):1364–9CrossRefPubMedGoogle Scholar
  22. Meikle PJ, et al. Prevalence of lysosomal storage disorders. JAMA 1999;281(3):249–54CrossRefPubMedGoogle Scholar
  23. Blanchard S, et al. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis I. Clin Chem 2008;54(12):2067–70CrossRefPubMedGoogle Scholar
  24. Li Y, et al. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem 2004;50(10):1785–96CrossRefPubMedGoogle Scholar
  25. Chien YH, et al. Pompe disease in infants: improving the prognosis by newborn screening and early treatment. Pediatrics 2009;124(6):e1116–25CrossRefPubMedGoogle Scholar
  26. Staretz-Chacham O, et al. Lysosomal storage disorders in the newborn. Pediatrics 2009;123(4):1191–207CrossRefPubMedGoogle Scholar
  27. Chien YH, et al. Early detection of Pompe disease by newborn screening is feasible: results from the Taiwan screening program. Pediatrics 2008;122(1):e39–45CrossRefPubMedGoogle Scholar
  28. Orsini JJ, et al. Implementation of newborn screening for Krabbe disease: population study and cutoff determination. Clin Biochem 2009;42(9):877–84CrossRefPubMedGoogle Scholar
  29. la Marca G, et al. New strategy for the screening of lysosomal storage disorders: the use of the online trapping-and-cleanup liquid chromatography/mass spectrometry. Anal Chem 2009Google Scholar
  30. Kasper DC, et al. (2010) The application of multiplexed, multi-dimensional UHPLC-MS/MS to the high throughput screening of lysosomal storage disorders in newborn bloodspots. (submitted for publication)Google Scholar
  31. Gan-Schreier H, et al. Newborn population screening for classic homocystinuria by determination of total homocysteine from Guthrie Cards. J Pediatr 2009Google Scholar
  32. Hubbard WC, et al. Combined liquid chromatography-tandem mass spectrometry as an analytical method for high throughput screening for X-linked adrenoleukodystrophy and other peroxisomal disorders: preliminary findings. Mol Genet Metab 2006;89(1–2):185–7CrossRefPubMedGoogle Scholar
  33. Dietzen DJ, et al. National academy of clinical biochemistry laboratory medicine practice guidelines: follow-up testing for metabolic disease identified by expanded newborn screening using tandem mass spectrometry; executive summary. Clin Chem 2009;55(9):1615–26CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • David C. Kasper
    • 1
    • 2
  • Rene Ratschmann
    • 1
  • Thomas F. Metz
    • 1
    • 2
  • Thomas P. Mechtler
    • 1
    • 2
  • Dorothea Möslinger
    • 1
  • Vassiliki Konstantopoulou
    • 1
  • Chike B. Item
    • 1
    • 2
  • Arnold Pollak
    • 1
    • 2
  • Kurt R. Herkner
    • 1
    • 2
  1. 1.Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
  2. 2.Austrian Newborn Screening and Laboratory for Inherited Metabolic DisordersViennaAustria

Personalised recommendations