Advertisement

Wiener klinische Wochenschrift

, 121:544 | Cite as

Gesundheitliche Bedeutung natürlicher Mineralwässer

  • Wolfgang MarktlEmail author
Übersicht

Zusammenfassung

Die medizinische Bedeutung von Mineralwässern hängt von den Gehalten der jeweils vorhandenen Mineralstoffe und Spurenelemente ab. Von den Hauptinhaltsstoffen spielen Calcium und Magnesium aus gesundheitlicher Sicht die wichtigste Rolle, bei den Spurenelementen sind es Jod, Fluor und Lithium. Die Bioverfügbarkeit von Mineralstoffen aus den Mineralwässern ist gut und liegt im selben Bereich wie bei der Milch. Ein gesundheitlich positiver Wert der Zufuhr von Mineralwasserinhaltsstoffen ist besonders dann gegeben, wenn die alimentäre Zufuhr nicht gewährleistet ist. Die Befürchtung eines unerwünschten blutdruckerhöhenden Effekts durch die in den Mineralwässern enthaltenen Natriummengen ist nicht gerechtfertigt. Mineralwässer enthalten nur geringe Mengen von Natrium vorwiegend in Form von Natriumhydrogencarbonat und diese Verbindung hat keinen hypertensinogenen Effekt. Ein Vorteil der Zufuhr von Mineralstoffen und Spurenelementen durch regelmäßigen Konsum von Mineralwässern kann darin gesehen werden, dass damit gleichzeitig eine Flüssigkeitszufuhr, aber keine Aufnahme energieliefernder Nährstoffe verbunden ist. Studien, welche direkte Nachweise des gesundheitlichen Wertes des regelmäßigen Konsums von Mineralwässern liefern, sind allerdings bisher nur spärlich vorhanden.

Schlüsselwörter

Mineralwasser Inhaltsstoffe Bioverfügbarkeit Ernährungsmedizin 

Health-related effects of natural mineral waters

Summary

The medical importance of mineral waters depends on the contained amount of minerals and trace elements. Calcium and magnesium in mineral waters are of greatest interest with respect to their potential relevance for the health status; iodine, fluorine and lithium are the most important trace elements. The bioavailability of minerals from mineral water is good and can be compared with the values derived from milk. A positive effect of the minerals in mineral water on health status is especially apparent in the case of insufficient intake by nutrition. The apprehension that there might be an undesired hypertensinogenic effect due to the sodium content in mineral waters is not justified. Sodium is present in mineral water in small amounts only, and mainly as sodium bicarbonate, which has no effect on blood pressure. A certain advantage of a delivery of minerals and trace elements by regular drinking of mineral waters is the simultaneous intake of water, without supply of energy. Studies giving direct evidence of the health value of a regular consumption of mineral waters are, however, up to now rather scarce.

Keywords

Mineral water Contents Bioavailability Nutrition 

Literatur

  1. Heaney RP, Dowell MS (1994) Absorbability of the calcium in a high-calcium mineral water. Osteoporosis Int 4: 323–324CrossRefGoogle Scholar
  2. Couzy F, Kastenmeyer P, Vigo M, Clough J, Munoz-Box R, Barclay DV (1995) Calcium bioavailability from a calcium and sulfate-rich mineral water, compared with milk, in young adult women. Am J Clin Nutr 62: 1239–1244PubMedGoogle Scholar
  3. Böhmer H, Müller H, Resch K-L (2000) Calcium supplementation with calcium-rich mineral waters: a systematic review and meta-analysis of its bioavailability. Osteoporosis Int 11: 938–943CrossRefGoogle Scholar
  4. Heaney RP (2006) Absorbability and utility of calcium in mineral waters. Am J Clin Nutr 84: 371–374PubMedGoogle Scholar
  5. Ekmekcioglu C (2000) Intestinal bioavailability of minerals and trace elements from milk and beverages in humans. Nahrung 44: 390–397CrossRefPubMedGoogle Scholar
  6. Grimm P, Nowitzki-Grimm S (1999) Resorption von Magnesium und Calcium aus Mineralwässern mit unterschiedlichen Anionen. Magnesium Bull 21: 77–79Google Scholar
  7. Kiss SA, Foster T, Dongo A (2004) Absorption and effect of the magnesium content of a mineral water in the human body. J Am Coll Nutr 23: 758S–762SPubMedGoogle Scholar
  8. Verhas M, La Gueronniere V, Grognet JM, Paternot J, Hermanne A, Van den Winkel P, et al (2002) Magnesium bioavailability from mineral water. A study in adult men. Europ J Clin Nutr 56: 442–447CrossRefGoogle Scholar
  9. Sabatier M, Arnaud MJ, Kastenmeyer P, Rytz A, Berclay DV (2002) Meal effect on magnesium bioavailability from mineral water in healthy women. Am J Clin Nutr 75: 69–71Google Scholar
  10. Spencer H, Fuller H, Norris C, Williams D (1994) Effect of magnesium on the intestinal absorption of calcium in man. J Am Coll Nutr 13: 485–492PubMedGoogle Scholar
  11. Lipkin M, Newmark HL (1999) Vitamin D, calcium and prevention of breast cancer: a review. J Am Coll Nutr 18: 392S–397SPubMedGoogle Scholar
  12. Miller GD, Anderson JJB (1999) The role of calcium in prevention of chronic diseases. J Am Coll Nutr 18: 371S–372SPubMedGoogle Scholar
  13. Niklas ThA (2003) Calcium intake trends and health consequences from childhood through adulthood. J Am Coll Nutr 22: 340–356Google Scholar
  14. Guillemant J, Le H-T, Accarie Ch, Tezenas du Montel S, Delabroise A-M, Arnaud MJ, et al (2000) Mineral water as a source of dietary calcium: acute effects on parathyroid function and bone resorption in young men. Am J Clin Nutr 71: 999–1002PubMedGoogle Scholar
  15. Guillemant J, Accarie Ch, de la Gueronniere V, Guillemant S (2002) Calcium in mineral water can effectively suppress parathyroid function and bone resorption. Nutr Res 22: 901–910CrossRefGoogle Scholar
  16. Wynn E, Raetz E, Burckhardt P (2009) The composition of mineral waters sourced from Europe and North America in respect to bone health: composition of mineral water optimal for bone. Br J Nutr 101: 1195–1199CrossRefPubMedGoogle Scholar
  17. Porta S, Zirm B, Liebmann P, Wagner T, Zirm A, Pracher G, et al (1994) Signifikante Verbesserungen in der Antwort auf physiologischen Stress nach Magnesiumsupplementation während eines Kuraufenthaltes. Magnesium Bull 16: 54–58Google Scholar
  18. Cernak J, Savic V, Kotur J, Prokic V, Kuljic B, Grbovic D, et al (2000) Alterations in magnesium and oxidative status during chronic emotional stress. Magnesium Res 13: 29–36Google Scholar
  19. Rubenowitz E, Axelsson G, Rylander R (1998) Magnesium in drinking water and body magnesium status measured using an oral loading test. Scand J Clin Lab Invest 58: 423–428CrossRefPubMedGoogle Scholar
  20. Kurtz ThW, Morris RC (1985) Dietary chloride as a determinant of disordered calcium metabolism in salt-dependent hypertension. Life Sci 36: 921–929CrossRefPubMedGoogle Scholar
  21. Luft FD, Steinberg H, Ganten U, Meier D, Gloss K, Lang RE, et al (1988) Effect of sodium chloride and sodium bicarbonate on blood pressure in stroke prone spontaneously hypertensive rats. Clin Sci 74: 577–588PubMedGoogle Scholar
  22. Ganry O, Boudet J, Wargon C, Hornych A, Meyer Ph (1993) Effect of sodium bicarbonate and sodium chloride on arterial blood pressure, plasma renin activity and urinary prostaglandins in healthy volunteers. J Hypertens 11 [Suppl 5]: S202–S203Google Scholar
  23. Schorr U, Distler A, Sharma AM (1996) Effect of sodium chloride- and sodium bicarbonate-rich mineral water on blood pressure and metabolic parameters in elderly normotensive individuals: a randomized double-blind crossover trial. J Hypertens 14: 131–135PubMedGoogle Scholar
  24. Verordnung über natürliches Mineralwasser, Quellwasser und Tafelwasser (Mineral- und Tafelwasser-Verordnung) vom 1. August 1984 (BGBl. I S. 1036)Google Scholar
  25. Houston R (1999) Iodine. Physiology, dietary sources and requirements. In: Sadler MJ, Strain JJ, Caballero B (eds) Encyclopedia of human nutrition. Academic Press, San Diego-London, pp 1138–1146Google Scholar
  26. Kavishe FP (1999) Iodine deficiency disorders. In: Sadler MJ, Strain JJ, Caballero B (eds) Encyclopedia of human nutrition. Academic Press, San Diego-London, pp 1146–1153Google Scholar
  27. Dunn JT (2000) Trace elements and mineral nutrition in endocrine disease. In: Bogden JT, Klevay LM (eds) Clinical nutrition of the essential trace elements and minerals. Humana Press, Totowa, New Jersey, pp 227–238Google Scholar
  28. Krajovicova-Kudlackova M, Buckova K, Klimes I, Sebokova E (2003) Iodine deficiency in vegetarians. Ann Nutr Metab 47: 183–185CrossRefGoogle Scholar
  29. McDonagh MS, Whiting PF, Wilson PM, Sutton AJ, Chestnutt I, Cooper J, et al (2000) Systematic review of water fluoridation. Bmj 321: 855–875CrossRefPubMedGoogle Scholar
  30. Schrauzer GN (2002) Lithium: occurence, dietary intakes, nutritional essentiality. J Am Coll Nutr 21: 14–21PubMedGoogle Scholar
  31. Ekmekcioglu C (2006) Lithium. In: Ekmekcioglu C, Marktl W (eds) Essenzielle Spurenelemente. Klinik und Ernährungsmedizin. Springer, Wien, pp 173–179CrossRefGoogle Scholar
  32. Dawson EB, Moore TD, McGanity WJ (1997) The mathematical relationship of drinking water lithium and rainfall to mental hospital admissions. Dis Nerv Syst 31: 811–820Google Scholar
  33. Dawson EB, Moore TD, McGanity WJ (1972) Relationship of lithium metabolism to mental hospital admission and homicide. Dis Nerv Syst 33: 546–556PubMedGoogle Scholar
  34. Schrauzer GN, Shresta KP (1990) Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res 25: 105–113CrossRefPubMedGoogle Scholar
  35. Schrauzer GN, Shresta KP, Flores-Arce MF (1992) Lithium in scalp hair of adults, students and violent criminals. Effect of supplementation and evidence for interaction of lithium with vitamin B12 and with other trace elements. Bio Trace Elem Res 34: 161–167CrossRefGoogle Scholar
  36. Schrauzer GN, de Vroey E (1994) Effects of nutritional lithium supplementation on mood. A placebo controlled study with former drug users. Biol Trace Elem Res 40: 89–101CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Zentrum für Biomolekulare Medizin und Pharmakologie der Medizinischen Universität WienInstitut für PhysiologieWienAustria

Personalised recommendations