Advertisement

Wiener klinische Wochenschrift

, Volume 121, Issue 9–10, pp 324–329 | Cite as

Ventricular arrhythmic disturbances and autonomic modulation after beating-heart revascularization in patients with pulmonary normotension

  • Jus Ksela
  • Jurij Matija Kalisnik
  • Viktor Avbelj
  • Piotr Suwalski
  • Grzegorz Suwalski
  • Borut Gersak
Original article

Summary

BACKGROUND: De-novo ventricular arrhythmias are potentially life-threatening complications after beating-heart revascularization (off-pump CABG). Whether pulmonary hypertension can influence initiation of ventricular arrhythmias through increased sympathetic activity is controversial. In order to determine the influence of pulmonary hypertension on its relative contribution to ventricular arrhythmia, we first had to define the role of cardiac autonomic modulation in patients with pulmonary normotension. We aimed to observe how parameters of linear and nonlinear heart rate variability are changed pre- and postoperatively in patients with pulmonary normotension undergoing off-pump CABG. METHODS: Fifteen-minute ECG recordings were collected before and after off-pump CABG in 54 patients with multivessel coronary artery disease and pulmonary normotension to determine linear (TP, HF, LF, LF:HF ratio) and nonlinear detrended fluctuation analysis (α1, α2) and fractal dimension (average, high and low) parameters of heart rate variability. Arrhythmia was monitored preoperatively in 24-hour Holter recordings and postoperatively by continuous monitoring and clinical assessment. RESULTS: Deterioration from simple (Lown I–II) to complex (Lown III–V) ventricular arrhythmia was observed in 19 patients, and improvement from complex to simple arrhythmia in five patients (P = 0.022). Patients with postoperative deterioration of ventricular arrhythmia had preoperatively significantly lower values of TP, HF and LF (P = 0.024–0.043) and postoperatively significantly higher values on the low fractal dimension index (P = 0.031) than patients with postoperative improvement of arrhythmia. CONCLUSION: Patients experiencing postoperative deterioration of ventricular arrhythmia already have impaired autonomic regulation before surgery. Higher postoperative values on the low fractal dimension index indicate that sympathetic predominance with or without concomitant vagal withdrawal is the underlying neurogenic mechanism contributing to ventricular arrhythmia.

Keywords

Ventricular arrhythmias Off-pump CABG Nonlinear heart rate dynamics Heart rate variability Detrended fluctuation analysis Fractal dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ascione R, Reeves BC, Santo K, Khan N, Angelini GD (2004) Predictors of new malignant ventricular arrhythmias after coronary surgery: a case-control study. J Am Coll Cardiol 43: 1630–1638PubMedCrossRefGoogle Scholar
  2. Budeus M, Feindt P, Gams E, Wieneke H, Erbel R, Sack S (2006) Risk factors of ventricular tachyarrhythmias after coronary artery bypass grafting. Int J Cardiol 113: 201–208PubMedCrossRefGoogle Scholar
  3. Luqman N, Sung RJ, Wang CL, Kuo CT (2007) Myocardial ischemia and ventricular fibrillation: pathophysiology and clinical implications. Int J Cardiol 119: 283–290PubMedCrossRefGoogle Scholar
  4. Hogue CW, Domitrovich PP, Stein PK, Despotis GD, Schuessler RB, Kleiger RE, et al (1998) RR interval dynamics before atrial fibrillation in patients after coronary artery bypass graft surgery. Circulation 98: 429–434PubMedGoogle Scholar
  5. Kalisnik JM, Avbelj V, Trobec R, Ivaskovic D, Vidmar G, Troise G, et al (2007) Effects of beating –versus arrested-heart revascularization on cardiac autonomic regulation and arrhythmias. Heart Surg Forum 10: 279–287CrossRefGoogle Scholar
  6. Rosas-Peralta M, Sandoval-Zarate J, Attie F, Pulido T, Santos E, Granados NZ, et al (2006) Clinical implications and prognostic significance of the study on the circadian variation of heart rate variability in patients with severe pulmonary hypertension. Gac Med Mex 142: 19–28PubMedGoogle Scholar
  7. Ramakrishna G, Sprung J, Ravi BS, Chandrasekaran K, McGoon MD (2005) Impact of pulmonary hypertension on the outcome of noncardiac surgery: predictors of perioperative morbidity and mortality. J Am Coll Cardiol 45: 1691–1699PubMedCrossRefGoogle Scholar
  8. Fauchier L, Melin A, Eder V, Antier D, Bonnet P (2006) Heart rate variability in rats with chronic hypoxic pulmonary hypertension. Ann Cardiol Angeiol 55: 249–254CrossRefGoogle Scholar
  9. Zamaklar-Trifunović D, Seferović PM, Zivković M, Jelić V, Vukomanović G, Petrović M, et al (2005) Influence of the heart failure severity on heart rate variability. Srp Arh Celok Lek 133: 484–491PubMedCrossRefGoogle Scholar
  10. Heart rate variability: standard of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology the North American Society of Pacing Electrophysiology (1996) Circulation 93: 1043–1065Google Scholar
  11. Beckers F, Verheyden B, Aubert AE (2006) Aging and nonlinear heart rate control in a healthy population. Am J Physiol Heart Circ Physiol 290: 2560–2570CrossRefGoogle Scholar
  12. Sedivy R, Thurner S, Kastner J, Maurer G (2000) Nonlinear dynamics, chaos theory and wavelet analysis of the heart. Wien Klin Wochenschr 112: 177–183PubMedGoogle Scholar
  13. Martischnig A, Boderman D (2007) Pulmonary hypertension. Wien Klin Wochenschr 119: 107–120PubMedGoogle Scholar
  14. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5: 82–87PubMedCrossRefGoogle Scholar
  15. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101: E215–220PubMedGoogle Scholar
  16. Mäkikallio TH, Seppänen T, Airaksinen KE, Koistinen J, Tulppo MP, Peng CK, et al (1997) Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol 80: 779–783PubMedCrossRefGoogle Scholar
  17. Tapanainen JM, Thomsen PEB, Køber L, Torp-Pedersen C, Mäkikallio TH, Still AM, et al (2002) Fractal analysis of heart rate variability and mortality after an acute myocardial infarction. Am J Cardiol 90: 347–352PubMedCrossRefGoogle Scholar
  18. Mäkikallio TH, Huikuri HV, Mäkikallio A, Sourander LB, Mitrani RD, Castellanos A, et al (2001) Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J Am Coll Cardiol 37: 1395–1404PubMedCrossRefGoogle Scholar
  19. Acharya RU, Bhat PS, Kannathal N, Rao A, Lim CM (2005) Analysis of cardiac health using fractal dimension and wavelet transformation. ITBM-RBM 26: 133–139CrossRefGoogle Scholar
  20. Kikuchi A, Unno N, Horikoshi T, Shimizu T, Kozuma S, Taketani Y (2005) Changes in fractal features of fetal heart rate during pregnancy. Earl Hum Dev 81: 655–661CrossRefGoogle Scholar
  21. Higuchi T (1990) Relationship between the fractal dimension and the power law index for a time series: a numerical investigation. Physica D 46: 254–264CrossRefGoogle Scholar
  22. David M, Hirsch M, Akselrod S (2006) Maturation of fetal cardiac autonomic control as expressed by fetal heart rate variability. Comput Cardiol 33: 901–904Google Scholar
  23. Lainscak M, Dagres N, Filippatos GS, Anker SD, Kremastinos DT (2008) Atrial fibrillation in chronic non-cardiac diseases: where do we stand? Int J Cardiol 128: 311–315PubMedCrossRefGoogle Scholar
  24. Fauchier L, Babuty D, Melin A, Bonnet P, Consay P, Fauchier JP (2004) Heart rate variability in severe right or left heart failure: the role of pulmonary hypertension and resistances. Eur J Heart Fail 6: 181–185PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jus Ksela
    • 1
  • Jurij Matija Kalisnik
    • 2
  • Viktor Avbelj
    • 3
  • Piotr Suwalski
    • 1
  • Grzegorz Suwalski
    • 4
  • Borut Gersak
    • 2
  1. 1.Department of Cardiac SurgeryUniversity Clinical Center MariborSlovenia
  2. 2.Department of Cardiovascular SurgeryUniversity Medical Center LjubljanaSlovenia
  3. 3.Department of Communication SystemsJozef Stefan Institute LjubljanaSlovenia
  4. 4.Department of Cardiac Surgery, 1st Chair of CardiologyMedical University of WarsawPoland

Personalised recommendations