Advertisement

Clostridium difficile: a new zoonotic agent?

  • Alexander Indra
  • Heimo Lassnig
  • Nina Baliko
  • Peter Much
  • Anita Fiedler
  • Steliana Huhulescu
  • Franz Allerberger
Review article

Summary

Clostridium difficile is mainly considered a nosocomial pathogen associated with diarrhea and pseudomembranous colitis in hospitalized patients. Austrian hospitals reported 2761 cases of C. difficile infection (including 277 lethal outcomes) in 2007, compared with 777 cases (including 54 lethal outcomes) in 2003. The occurrence of community-acquired C. difficile infection is also increasingly reported. Recent studies have shown the occurrence of C. difficile in food and animals. The aim of the present study was to determine the occurrence of C. difficile in food and animals in Austria. Between March and July 2008, gut or fecal samples from 67 cows, 61 pigs and 59 broiler chickens were collected at Austrian abattoirs. Between February and April 2008 meat samples (51 beef [25 ground], 27 pork [17 ground] and 6 samples of chicken meat) were purchased at retail outlets. Of the 187 samples tested, eight yielded C. difficile: in cows 3/67 samples (4.5%) were positive, in pigs 2/61 (3.3%), in broiler chickens 3/59 (5%). Six of the eight isolates yielded toxigenic C. difficile (toxins A and B): 2/67 (3%) cow samples, 2/61 (3.3%) pig samples, 2/59 (3.4%) chicken samples. Genes for the binary toxin were detected in one of the two pig isolates, a PCR ribotype 126 strain. None of the 84 meat samples yielded C. difficile. The results of this Austrian study suggest that animal reservoirs are possible sources, via food, of human C. difficile infection.

Keywords

Clostridium difficile Ribotype 078 Animals Meat Austria 

Clostridium difficile: ein neuer Zoonoseerreger?

Zusammenfassung

Clostridium difficile wird meist als nosokomialer Erreger, der mit Diarrhö oder pseudomembranöser Colitis einhergeht, angesehen. Im Jahr 2007 wurden von Spitälern in Österreich 2.761 Clostridium-difficile-Infektionen (277 davon mit tödlichem Ausgang) gemeldet, im Vergleich dazu waren im Jahr 2003 nur 777 Fälle (53 davon mit tödlichem Ausgang) registriert worden. Neben diesem Anstieg der nosokomialen Erkrankungen wird auch über ein vermehrtes Auftreten von ambulant erworbenen C. difficile-Infektionen berichtet. Aktuelle Publikationen belegen das Vorkommen von C. difficile bei Tieren und in Lebensmitteln. Ziel der vorliegenden Studie war der Nachweis von C. difficile in Tieren und Lebensmitteln in Österreich. Zwischen März 2008 und Juli 2008 wurden Stuhl- und Kotproben von 67 Rindern, 61 Schweinen und 59 Broilern in österreichischen Schlachthöfen gesammelt. Zudem wurden Fleischproben (51 Rind [25 davon faschiert], 27 Schwein [17 faschiert] und 6 Hühnerfleischproben) zwischen Februar 2008 und April 2008 in Supermärkten gekauft und untersucht. Von den 187 getesteten Proben konnten in 8 C. difficile nachgewiesen werden: dabei waren 3/67 (4,5%) Kuhproben, 2/61 (3,3%) Schweineproben und 3/59 (5%) Hühnerproben positiv. Sechs der acht Isolate (2/67 [3%] Kuhproben, 2/61 [3,3%] Schweineproben und 2/59 [3,4%] Hühnerproben) waren toxinbildende C. difficile. In einem der zwei Toxin-positiven C. difficile Schweineproben war auch der Nachweis eines binären Toxin-Bildners des PCR-Ribotyps 126 möglich. In keiner der untersuchten Fleischproben konnte C. difficile nachgewiesen werden. Die Ergebnisse dieser Studie bestätigen, dass Tiere als Reservoir dienen können und eine Übertragung von C. difficile über Lebensmittel möglich ist.

References

  1. Rodriguez-Palacios A, Staempfli HR, Duffield T, Weese JS (2007) Clostridium difficile in retail ground meat, Canada. Emerg Infect Dis 13: 485–487PubMedGoogle Scholar
  2. Kuijper EJ, Barbut F, Brazier JS, Kleinkauf N, Eckmanns T, Lambert ML, et al (2008) Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill 13 (31) pii: 18942Google Scholar
  3. Jhung MA, Thompson AD, Killgore GE, Zukowski WE, Songer G, Warny M, et al (2008) Toxinotype V Clostridium difficile in humans and food animals. Emerg Infect Dis 14: 1039–1045PubMedCrossRefGoogle Scholar
  4. Kuijper EJ, Coignard B, Tüll P (2006) Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12: 62–68CrossRefGoogle Scholar
  5. Indra A, Schmid D, Huhulescu S, Hell M, Gattringer R, Hasenberger P, et al (2008) Characterization of clinical Clostridium difficile isolates by PCR ribotyping and detection of toxin genes in Austria, 2006–2007. J Med Microbiol 57: 702–708PubMedCrossRefGoogle Scholar
  6. Indra A, Huhulescu S, Kernbichler S, Kuo HW, Feierl G, Holler A, et al (2008) First cases of Clostridium difficile PCR ribotype 027 acquired in Austria. Euro Surveill 13 (20) pii: 18875Google Scholar
  7. McDonald LC, Owings M, Jernigan DB (2006) Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003. Emerg Infect Dis 12: 409–415PubMedGoogle Scholar
  8. Kuijper EJ, van den Berg RJ, Debast S, Visser CE, Veenendaal D, Troelstra A, et al (2006) Clostridium difficile ribotype 027, toxinotype III, the Netherlands. Emerg Infect Dis 12: 827–830PubMedGoogle Scholar
  9. Lefebvre SL, Arroyo LG, Weese JS (2006) Epidemic Clostridium difficile strain in hospital visitation dog. Emerg Infect Dis 12: 1036–1037PubMedGoogle Scholar
  10. Rupnik M, Widmer A, Zimmermann O, Eckert C, Barbut F (2008) Clostridium difficile toxinotype V, ribotype 078, in animals and humans. J Clin Microbiol 46: 2146 (Epub 2008 Apr 16)PubMedCrossRefGoogle Scholar
  11. Borriello SP, Honour P (1981) Simplified procedure for the routine isolation of Clostridium difficile from faeces. J Clin Pathol 34: 1124–1127PubMedCrossRefGoogle Scholar
  12. Clinical and Laboratory Standards Institute (2007) Methods for antimicrobial susceptibility testing of anaerobic bacteria, 7th edn. Approved standard M11–A7Google Scholar
  13. Bidet P, Barbut F, Lalande V, Burghoffer B, Petit JC (1999) Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 175: 261–266PubMedCrossRefGoogle Scholar
  14. van den Berg RJ, Claas ECJ, Oyib DH, Klaassen CHW, Dijkshoorn L, Brazier JS, et al (2004) Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol 42: 1035–1041PubMedCrossRefGoogle Scholar
  15. Kato H, Kato N, Watanabe K, Yamamoto T, Suzuki K, Ishigo S, et al (2001) Analysis of Clostridium difficile isolates from nosocomial outbreaks at three hospitals in diverse areas of Japan. J Clin Microbiol 39: 1391–1395PubMedCrossRefGoogle Scholar
  16. Stubbs SL, Brazier JS, O'Neill GL, Duerden BI (1999) PCR targeted to the 16S–23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37: 461–463PubMedGoogle Scholar
  17. Pépin J, Saheb N, Coulombe M, Alary M, Corriveau M, Authier S, et al (2005) Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 41: 1254–1260PubMedCrossRefGoogle Scholar
  18. al Saif N, Brazier JS (1996) The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol 45: 133–137PubMedGoogle Scholar
  19. Songer JG, Post KW, Larson DJ, Jost H, Glock RD (2000) Infection of neonatal swine with Clostridium difficile. Swine Health and Production 8: 185–189Google Scholar
  20. Songer JG, Anderson MA (2006) Clostridium difficile: an important pathogen of food animals. Anaerobe 12: 1–4PubMedCrossRefGoogle Scholar
  21. Simango C (2006) Prevalence of Clostridium difficile in the environment in a rural community in Zimbabwe. Trans R Soc Trop Med Hyg 100: 1146–1150PubMedCrossRefGoogle Scholar
  22. Rodriguez-Palacios A, Stämpfli HR, Duffield T, Peregrine AS, Trotz-Williams LA, Arroyo LG, et al (2006) Clostridium difficile PCR ribotypes in calves, Canada. Emerg Infect Dis 12: 1730–1736PubMedGoogle Scholar
  23. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, et al (2008) Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47 (9): 1162–1170PubMedCrossRefGoogle Scholar
  24. Stabler RA, Gerding DN, Songer JG, Drudy D, Brazier JS, Trinh HT, et al (2006) Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 188: 7297–7305PubMedCrossRefGoogle Scholar
  25. Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, et al (2008) Characterization of Clostridium difficile isolates by capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol 57: 1377–1382PubMedCrossRefGoogle Scholar
  26. Weese JS, Rousseau J, Arroyo L (2005) Bacteriological evaluation of commercial canine and feline raw diets. Can Vet J 46: 513–516PubMedGoogle Scholar
  27. Lefebvre SL, Waltner-Toews D, Peregrine AS, Reid-Smith R, Hodge L, Arroyo LG, et al (2006) Prevalence of zoonotic agents in dogs visiting hospitalized people in Ontario: implications for infection control. J Hosp Infect 62: 458–466PubMedCrossRefGoogle Scholar
  28. Indra A, Huhulescu S, Hasenberger P, Schmid D, Alfery C, Wuerzner R, et al (2006) First isolation of Clostridium difficile PCR ribotype 027 in Austria. Euro Surveill 11: E060 914.3Google Scholar
  29. Rupnik M, Grabnar M, Geric B (2003) Binary toxin producing Clostridium difficile strains. Anaerobe 9: 289–294PubMedCrossRefGoogle Scholar
  30. Bignardi GE, Settle C (2008) Different ribotypes in community-acquired Clostridium difficile. J Hosp Infect 70: 96–98PubMedCrossRefGoogle Scholar
  31. Arroyo LG, Kruth SA, Willey BM, Staempfli HR, Low DE, Weese JS (2005) PCR ribotyping of Clostridium difficile isolates originating from human and animal sources. J Med Microbiol 54: 163–166PubMedCrossRefGoogle Scholar
  32. Goorhuis A, Debast SB, van Leengoed LAMG, Harmanus C, Notermans DW, Bergwerff AA, et al (2008) Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol 46: 1157–1158PubMedCrossRefGoogle Scholar
  33. Keel K, Brazier JS, Post KW, Weese S, Songer JG (2007) Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 45: 1963–1964PubMedCrossRefGoogle Scholar
  34. Pirs T, Ocepek M, Rupnik M (2008) Isolation of Clostridium difficile from food animals in Slovenia. J Med Microbiol 57: 790–792PubMedCrossRefGoogle Scholar
  35. Songer JG (2004) The emergence of Clostridium difficile as a pathogen of food animals. Anim Health Res Rev 5: 321–326PubMedCrossRefGoogle Scholar
  36. Songer JG, Uzal FA (2005) Clostridial enteric infections in pigs. J Vet Diagn Invest 17: 528–536PubMedGoogle Scholar
  37. Kuijper EJ, Coignard B, Tull P (2006) Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12 [Suppl 6]: 2–18PubMedCrossRefGoogle Scholar
  38. Joebstl M, Heuberger S, Nepf R, Koefer J, Wagner M (2008) Clostridium difficile in Rohprodukten tierischer Herkunft. In: Proceedings of the 31st OEGHMP Meeting, Bad Ischl, 2008, pp 37–38Google Scholar
  39. Olson MM, Shanholtzer CJ, Lee JT, Gerding DN (1994) Ten years of prospective Clostridium difficile-associated disease surveillance and treatment at the Minneapolis VA Medical Center, 1982–1991. Infect Control Hosp Epidemiol 15: 371–381PubMedCrossRefGoogle Scholar
  40. Simango C, Mwakurudza S (2008) Clostridium difficile in broiler chickens sold at market places in Zimbabwe and their antimicrobial susceptibility. Int J Food Microbiol 124: 268–270PubMedCrossRefGoogle Scholar
  41. Barbut F, Petit JC (2001) Epidemiology of Clostridium difficile-associated infections. Clin Microbiol Infect 7: 405–410PubMedCrossRefGoogle Scholar
  42. Brazier J, Patel B, Pearson A (2007) Distribution of Clostridium difficile PCR ribotype 027 in British hospitals. Euro Surveill 12E070426.2 www.eurosurveillance.org/ew/2007/070426.asp#2
  43. Bauer MP, Goorhuis A, Koster T, Numan-Ruberg SC, Hagen EC, Debast SB, et al (2008) Community-onset Clostridium difficile-associated diarrhoea not associated with antibiotic usage – two case reports with review of the changing epidemiology of Clostridium difficile-associated diarrhoea. Neth J Med 66: 207–211PubMedGoogle Scholar
  44. Benson L, Song X, Campos J, Singh N (2007) Changing epidemiology of Clostridium difficile-associated disease in children. Infect Control Hosp Epidemiol 28: 1233–1235PubMedCrossRefGoogle Scholar
  45. DuPont HL, Garey K, Caeiro J, Jiang Z (2008) New advances in Clostridium difficile infection: changing epidemiology, diagnosis, treatment and control. Curr Opin Infect Dis 21: 500–507PubMedCrossRefGoogle Scholar
  46. Leal J, Gregson DB, Ross T, Church DL, Laupland KB (2008) Epidemiology of Clostridium species bacteremia in Calgary, Canada, 2000–2006. J Infect 57: 198–203PubMedCrossRefGoogle Scholar
  47. Wilcox MH, Mooney L, Bendall R, Settle CD, Fawley WN (2008) A case-control study of community-associated Clostridium difficile infection. J Antimicrob Chemother 62: 388–396PubMedCrossRefGoogle Scholar
  48. Anonymous (2005) Severe Clostridium difficile-associated disease in populations previously at low risk – four states, 2005. MMWR Morb Mortal Wkly Rep 54: 1201–1205Google Scholar
  49. Huhulescu S, Kiss R, Brettlecker M, Cerney R, Hess C, Wewalka G, et al (2008) Etiology of acute gastroenteritis in three sentinel general practices, Austria 2007. Infection (in press)Google Scholar
  50. Rupnik M (2007) Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect 13: 457–459PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alexander Indra
    • 1
  • Heimo Lassnig
    • 2
  • Nina Baliko
    • 1
  • Peter Much
    • 3
  • Anita Fiedler
    • 1
  • Steliana Huhulescu
    • 1
  • Franz Allerberger
    • 1
  1. 1.Austrian Agency for Health and Food SafetyInstitute of Medical Microbiology and Hygiene, National Reference Center for Clostridium difficileWienAustria
  2. 2.Austrian Agency for Health and Food SafetyInstitute of Veterinary MedicineGrazAustria
  3. 3.Austrian Agency for Health and Food SafetyCenter for Infectious Diseases EpidemiologyWienAustria

Personalised recommendations