Advertisement

Wiener klinische Wochenschrift

, Volume 121, Issue 3–4, pp 86–90 | Cite as

Methicillin-resistant Staphylococcus aureus: a new zoonotic agent?

  • Burkhard Springer
  • Ulrike Orendi
  • Peter Much
  • Gerda Höger
  • Werner Ruppitsch
  • Karina Krziwanek
  • Sigrid Metz-Gercek
  • Helmut Mittermayer
Review article

Summary

Staphylococcus aureus is a major cause of infection in hospitals and the community. One third of the general population is colonized by the bacterium, constituting a risk factor for acquisition of infection with this pathogen. Worldwide, the increasing antibiotic resistance of S. aureus complicates treatment of infection and control measures. Soon after the introduction of methicillin, the first isolates resistant to this antibiotic were reported and named methicillin-resistant S. aureus (MRSA). During the past decade a major change in MRSA epidemiology has been observed: whereas in the past MRSA was almost exclusively regarded a hospital pathogen, the advent of community-acquired MRSA has led to infections in people without hospital-related risk factors. Recent evidence has also identified a link between colonization of livestock and MRSA carriage and infections in people who work with animals. Screening of pigs and pig farmers in the Netherlands revealed high prevalence of MRSA sequence type (ST) 398 and it has become clear that the emergence of ST398 is not just a Dutch problem, as reports on livestock colonization and human infections are appearing worldwide. In Austria, the ST398 lineage has been detected in dust samples from pig breeding facilities and in food samples. Since the first Austrian detection of this emerging lineage in 2006, 21 human isolates, partially associated with infections, have been observed. MRSA has to be regarded as a new emerging zoonotic agent and livestock may constitute a growing reservoir of the ST398 lineage. More information is needed so that control measures to reduce the impact of the emerging MRSA ST398 lineage on public health can be developed and implemented.

Keywords

MRSA Community-acquired ST398 Pigs Human Austria 

Methicillin resistenter Staphylococcus aureus: ein neuer Zoonoseerreger?

Zusammenfassung

Staphylococcus aureus ist ein bedeutender Erreger von Infektionen, die in Krankenhäusern und Pflegeeinrichtungen erworben werden, und bei der Allgemeinbevölkerung. Ein Drittel der Gesamtbevölkerung ist mit Staphylococcus aureus kolonisiert, wobei das Risiko, an einer Infektion durch Staphylococcus aureus zu erkranken bei diesen kolonisierten Personen erhöht ist. Die weltweit zunehmende Antibiotikaresistenz von Staphylococcus aureus schränkt die Behandlungsmöglichkeiten von Infektionen ein und erschwert Kontrollmaßnahmen. Kurz nach Einführung des Methicillins wurde über die ersten Methicillin-resistenten Staphylococcus aureus Isolate (MRSA) berichtet. Während des letzten Jahrzehnts vollzog sich außerdem eine epidemiologische Verschiebung von den bisher dominierenden Krankenhaus assoziierten MRSA Stämmen hin zu in der Gemeinschaft erworbenen MRSA Stämmen (community acquired MRSA, CA-MRSA), welche Infektionen auch bei dem Teil der Bevölkerung hervorrufen, der keine Risikofaktoren durch Krankenhauskontakte hat. Basierend auf neueren Untersuchungen besteht für den Sequenztyp (ST) 398 eine kausale Verbindung zwischen einer MRSA Kolonisation im Viehbestand und der MRSA Besiedlung, sowie dem Auftreten von Infektionen, bei Tierzüchtern. In den Niederlanden wurde eine hohe Besiedlungsrate durch den MRSA ST398 bei Schweinen und Schweinehaltern festgestellt. Weltweite Berichte über den Nachweis von ST398 MRSA verdeutlichen, dass das Auftreten des neuen Subtyps kein spezifisch holländisches Problem darstellt. In Österreich konnte der MRSA Sequenztyp 398 in Staubproben von Schweinezuchtbetrieben und aus Lebensmitteln isoliert werden. Seit dem ersten Auftreten des Sequenztyps ST398 als Infektionserreger beim Menschen in Österreich im Jahre 2006 konnten 21 Humanisolate nachgewiesen werden, wovon allerdings nur ein geringer Teil mit Infektionen assoziiert war. MRSA müssen zukünftig auch als zoonotisches Agens betrachtet werden, wobei der Nutztierbestand ein bedeutendes Reservoir darstellt. Weitergehende Untersuchungen sind nötig, um Kontrollmaßnahmen erarbeiten und implementieren zu können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kluytmans J, van Belkum A, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10: 505–520PubMedGoogle Scholar
  2. von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 344: 11–16PubMedCrossRefGoogle Scholar
  3. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y (2003) Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36: 53–59PubMedCrossRefGoogle Scholar
  4. Kollef MH (2007) Limitations of vancomycin in the management of resistant staphylococcal infections. Clin Infect Dis 45: S191–195PubMedCrossRefGoogle Scholar
  5. Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M (2005) Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11: 1965–1966PubMedGoogle Scholar
  6. Boucher HW, Corey GR (2008) Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46: S344–349PubMedCrossRefGoogle Scholar
  7. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, et al (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9: 978–984PubMedGoogle Scholar
  8. Tristan A, Bes M, Meugnier H, Lina G, Bozdogan B, Courvalin P, et al (2007) Global distribution of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus, 2006. Emerg Infect Dis 13: 594–600PubMedGoogle Scholar
  9. David MZ, Glikman D, Crawford SE, Peng J, King KJ, Hostetler MA, et al (2008) What is community-associated methicillin-resistant Staphylococcus aureus? J Infect Dis 197: 1235–1243PubMedCrossRefGoogle Scholar
  10. Deurenberg RH, Vink C, Kalenic S, Friedrich AW, Bruggeman CA, Stobberingh EE (2007) The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 13: 222–235PubMedCrossRefGoogle Scholar
  11. Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O'Brien FG, et al (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40: 4289–4294PubMedCrossRefGoogle Scholar
  12. Ender M, McCallum N, Adhikari R, Berger-Bächi B (2004) Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob Agents Chemother 48: 2295–2297PubMedCrossRefGoogle Scholar
  13. Lee SM, Ender M, Adhikari R, Smith JM, Berger-Bächi B, Cook GM (2007) Fitness cost of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus by way of continuous culture. Antimicrob Agents Chemother 51: 1497–1499PubMedCrossRefGoogle Scholar
  14. Jansen WT, Beitsma MM, Koeman CJ, van Wamel WJ, Verhoef J, Fluit AC (2006) Novel mobile variants of staphylococcal cassette chromosome mec in Staphylococcus aureus. Antimicrob Agents Chemother 50: 2072–2078PubMedCrossRefGoogle Scholar
  15. Kenner J, O'Connor T, Piantanida N, Fishbain J, Eberly B, Viscount H, et al (2003) Rates of carriage of methicillin-resistant and methicillin-susceptible Staphylococcus aureus in an outpatient population. Infect Control Hosp Epidemiol 24: 439–444PubMedCrossRefGoogle Scholar
  16. Salgado CD, Farr BM, Calfee DP (2003) Community-acquired methicillin resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin Infect Dis 36: 131–139PubMedCrossRefGoogle Scholar
  17. Wertheim HF, Vos MC, Boelens HA, Voss A, Vandenbroucke-Grauls CM, Meester MH, et al (2004) Low prevalence of methicillin-resistant Staphylococcus aureus (MRSA) at hospital admission in the Netherlands: the value of search and destroy and restrictive antibiotic use. J Hosp Infect 56: 321–325PubMedCrossRefGoogle Scholar
  18. Scott GM, Thomson R, Malone-Lee J, Ridgway GL (1988) Cross-infection between animals and man: possible feline transmission of Staphylococcus aureus infection in humans? J Hosp Infect 12: 29–34PubMedCrossRefGoogle Scholar
  19. van Duijkeren E, Wolfhagen MJ, Heck ME, Wannet WJ (2005) Transmission of a Panton-Valentine leucocidin-positive, methicillin-resistant Staphylococcus aureus strain between humans and a dog. J Clin Microbiol 43: 6209–6211PubMedCrossRefGoogle Scholar
  20. Weese JS, Archambault M, Willey BM, Hearn P, Kreiswirth BN, Said-Salim B, et al (2005) Methicillin-resistant Staphylococcus aureus in horses and horse personnel, 2000–2002. Emerg Infect Dis 11: 430–435PubMedGoogle Scholar
  21. Huijsdens XW, van Dijke BJ, Spalburg E, van Santen-Verheuvel MG, Heck ME, Pluister GN, et al (2006) Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob 5: 26PubMedCrossRefGoogle Scholar
  22. de Neeling AJ, van den Broek MJ, Spalburg EC, van Santen-Verheuvel MG, Dam-Deisz WD, Boshuizen HC, et al (2007) High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol 122: 366–372PubMedCrossRefGoogle Scholar
  23. Witte W, Strommenger B, Stanek C, Cuny C (2007) Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis 13: 255–258PubMedGoogle Scholar
  24. Wulf MW, Sørum M, van Nes A, Skov R, Melchers WJ, Klaassen CH, et al (2008) Prevalence of methicillin-resistant Staphylococcus aureus among veterinarians: an international study. Clin Microbiol Infect 14: 29–34PubMedCrossRefGoogle Scholar
  25. Bens CC, Voss A, Klaassen CH (2006) Presence of a novel DNA methylation enzyme in methicillin-resistant Staphylococcus aureus isolates associated with pig farming leads to uninterpretable results in standard pulsed-field gel electrophoresis analysis. J Clin Microbiol 44: 1875–1876PubMedCrossRefGoogle Scholar
  26. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38: 1008–1015PubMedGoogle Scholar
  27. Harmsen D, Claus H, Witte W, Rothganger J, Turnwald D, Vogel U (2003) Typing of methicillin resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41: 5442–5448PubMedCrossRefGoogle Scholar
  28. Nemati M, Hermans K, Lipinska U, Denis O, Deplano A, Struelens M, et al (2008) Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: first detection of livestock-associated methicillin-resistant strain ST398. Antimicrob Agents Chemother 52: 3817–3819PubMedCrossRefGoogle Scholar
  29. van den Eede A, Martens A, Lipinska U, Struelens M, Deplano A, Denis O, et al (2009) High occurrence of methicillin-resistant Staphylococcus aureus ST398 in equine nasal samples. Vet Microbiol 133: 138–144PubMedCrossRefGoogle Scholar
  30. Reischl U, Linde HJ, Metz M, Leppmeier B, Lehn N (2000) Rapid identification of methicillin-resistant Staphylococcus aureus and simultaneous species confirmation using real-time fluorescence PCR. J Clin Microbiol 38: 2429–2433PubMedGoogle Scholar
  31. Clinical and Laboratory Standards Institute (2008) Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement M100-S18 Wayne, PA, USAGoogle Scholar
  32. Ruppitsch W, Stöger A, Braun O, Strommenger B, Nübel U, Wewalka G, et al (2007) Methicillin-resistant Staphylococcus aureus: occurrence of a new spa type in two acute care hospitals in Austria. J Hosp Infect 67: 316–322PubMedCrossRefGoogle Scholar
  33. van Loo IH, Diederen BM, Savelkoul PH, Woudenberg JH, Roosendaal R, van Belkum A, et al (2007) Methicillin-resistant Staphylococcus aureus in meat products, the Netherlands. Emerg Infect Dis 13:1753–1755PubMedGoogle Scholar
  34. van Loo I, Huijsdens X, Tiemersma E, de Neeling A, van de Sande-Bruinsma N, Beaujean D, et al (2007) Emergence of methicillin-resistant Staphylococcus aureus of animal origin in humans. Emerg Infect Dis 13: 1834–1839PubMedGoogle Scholar
  35. Guardabassi L, Stegger M, Skov R (2007) Retrospective detection of methicillin resistant and susceptible Staphylococcus aureus ST398 in Danish slaughter pigs. Vet Microbiol 122: 384–386PubMedCrossRefGoogle Scholar
  36. Khanna T, Friendship R, Dewey C, Weese JS (2008) Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet Microbiol 128: 298–303PubMedCrossRefGoogle Scholar
  37. Yu F, Chen Z, Liu C, Zhang X, Lin X, Chi S, et al (2008) Prevalence of Staphylococcus aureus carrying Panton-Valentine leukocidin genes among isolates from hospitalised patients in China. Clin Microbiol Infect 14: 381–384PubMedCrossRefGoogle Scholar
  38. Gibbs SG, Green CF, Tarwater PM, Scarpino PV (2004) Airborne antibiotic resistant and non-resistant bacteria and fungi recovered from two swine herd confined animal feeding operations. J Occup Environ Hyg 1: 699–706PubMedCrossRefGoogle Scholar
  39. Gibbs SG, Green CF, Tarwater PM, Mota LC, Mena KD, Scarpino PV (2006) Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation. Environ Health Perspect 114: 1032–1037PubMedCrossRefGoogle Scholar
  40. Wagenvoort JH, De Brauwer EI, Sijstermans ML, Toenbreker HM (2005) Risk of re-introduction of methicillin-resistant Staphylococcus aureus into the hospital by intrafamilial spread from and to healthcare workers. J Hosp Infect 59: 67–68PubMedCrossRefGoogle Scholar
  41. Cespedes C, Said-Salim B, Miller M, Lo SH, Kreiswirth BN, Gordon RJ, et al (2005) The clonality of Staphylococcus aureus nasal carriage. J Infect Dis 191: 444–452PubMedCrossRefGoogle Scholar
  42. Welinder-Olsson C, Florén-Johansson K, Larsson L, Oberg S, Karlsson L, Ahrén C (2008) Infection with Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus t034. Emerg Infect Dis 14: 1271–1272PubMedCrossRefGoogle Scholar
  43. Melles DC, Gorkink RF, Boelens HA, Snijders SV, Peeters JK, Moorhouse MJ, et al (2004) Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus. J Clin Invest 114: 1732–1740PubMedGoogle Scholar
  44. van Rijen MM, Van Keulen PH, Kluytmans JA (2008) Increase in a Dutch hospital of methicillin-resistant Staphylococcus aureus related to animal farming. Clin Infect Dis 46: 261–263PubMedCrossRefGoogle Scholar
  45. Annigeri R, Conly J, Vas S, Dedier H, Prakashan KP, Bargman JM, et al (2001) Emergence of mupirocin-resistant Staphylococcus aureus in chronic peritoneal dialysis patients using mupirocin prophylaxis to prevent exit-site infection. Perit Dial Int 21: 554–559PubMedGoogle Scholar
  46. Allerberger F, Mittermayer H (2008) Antimicrobial Stewardship. Clin Microbiol Infect 14: 197–199PubMedCrossRefGoogle Scholar
  47. WHO (2007) Critically important antimicrobials for human medicine. Report of the second WHO-Expert meeting. Copenhagen, 29–31 May 2007Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Burkhard Springer
    • 1
  • Ulrike Orendi
    • 1
  • Peter Much
    • 1
  • Gerda Höger
    • 1
  • Werner Ruppitsch
    • 1
  • Karina Krziwanek
    • 2
  • Sigrid Metz-Gercek
    • 2
  • Helmut Mittermayer
    • 2
  1. 1.Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and HygieneNational Reference Laboratory for Antimicrobial Resistance and National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureusGrazAustria
  2. 2.Department of Hygiene, Microbiology and Tropical MedicineNational Reference Center for Nosocomial Infections and Antibiotic Resistance, Elisabethinen Hospital LinzLinzAustria

Personalised recommendations