Wiener klinische Wochenschrift

, Volume 119, Issue 17–18, pp 527–533 | Cite as

CFTR gene mutations in pancreatitis: Frequency and clinical manifestations in an Austrian patient cohort

  • Heinz Zoller
  • Margit Egg
  • Ivo Graziadei
  • Marc Creus
  • Andreas R. Janecke
  • Judith Löffler-Ragg
  • Wolfgang Vogel
Original Article


BACKGROUND/AIMS: Mutations in the gene encoding the cystic fibrosis transmembrane regulator (CFTR) are over-represented in patients with chronic pancreatitis: 13–37% of pancreatitis patients are heterozygous for CFTR mutations, compared with the carrier estimate of 3.2% in the central European population. The aim of the current study was to investigate the association between clinical manifestations of pancreatitis and CFTR carrier status. METHODS: A cohort of 133 pancreatitis patients was recruited in a confined geographical region (Tyrol – Western Austria) and analysed for the 30 most common CFTR gene mutations in Europe by multiplex PCR and gene sequencing. Pancreatitis was classified as acute or chronic according to the criteria of the Japan Pancreas Society (JPS) and etiological factors included in the TIGAR-O classification, namely toxic, idiopathic, genetic, autoimmune, recurrent and obstructive causes were assessed. RESULTS: The overall frequency of CFTR mutations in the patient cohort was 11.2%. In patients classified as 'idiopathic definitive chronic pancreatitis' (JPS criteria), the frequency of mutations was 12.7%, whereas patients with 'acute pancreatitis' or 'possible chronic pancreatitis' (JPS criteria) had a frequency of CFTR mutations of 10% and 9.1%, respectively. CONCLUSION: The frequency of CFTR mutations is highest in patients with definitive chronic pancreatitis and may therefore be regarded as a risk factor for the development of CP. However, multiple etiological factors for pancreatitis are present in the majority of patients. Mutation analysis of the CFTR gene therefore appears to be of limited diagnostic and prognostic value in the management of chronic pancreatitis.


Pancreatitis Cystic fibrosis transmembrane conductance regulator Genetic screening 

CFTR Genmutationen und Pankreatitis: Häufigkeit und klinische Präsentation in einer österreichischen Patientenkohorte


HINTERGRUND/ZIELE: Patienten mit chronischer Pankreatitis haben häufiger Mutationen im cystic fibrosis transmembrane regulator (CFTR) als die Durschnittsbevölkerung (Heterozygote CFTR Mutationen bei Pankreatitis Patienten 13–37% vs. 3,2% in der Europäischen Bevölkerung). Das Ziel dieser Studie war zu klären, ob sich Patienten mit CFTR Mutationen klinisch von Pankreatitis-Patienten ohne CFTR Mutation unterscheiden. PATIENTEN UND METHODE: Eine Kohorte von 133 Patienten mit Pankreatitis wurde mittels multiplex PCR und Sequenzierung auf die 30 häufigsten CFTR Genmutationen getestet. Gemäß den Kriterien der Japanischen Pankreas Gesellschaft wurde die Pankreatitis als 'acute', 'definitive chronic' or 'possible chronic' klassifiziert. Eine ätiologische Zuordnung erfolgte aufgrund der TIGAR-O Klassifikation in toxische, idiopathische, genetische, autoimmune und rekurrente bzw. obstruktive Pankreatitis. RESULTATE: In der Patientenkohorte war die Frequenz von CFTR Genmutationen 11,2%. In der Subgruppe von Patienten mit idiopatischer definitiv chronischer Pankreatitis waren 12,7% der Patienten heterozygot für eine Mutation im CFTR Gen. Im Vergleich dazu ergab die Subgruppenanalyse, dass bei Patienten mit akuter Pankreatits 10% und bei Patienten mir 'possible chronic' Pancreatitis nach JPS Kriterien 9,1% Mutationen im CFTR Gen hatten. SCHLUSSFOLGERUNG: CFTR Genmutationen könnten in der Pathogenese der chronischen Pankreatitis eine Rolle spielen, weil die beobachtete Frequenz bei Patienten mit 'definitive chronic pancreatitis' am höchsten war. Bei den meisten Patienten finden sich jedoch mehrfache Risikofaktoren nach TIGAR-O, weshalb die Mutationsanalyse des CFTR-Gens nur begrenzte Bedeutung für das Management der chronischen Pankreatitis hat.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Strate T, Knoefel WT, Yekebas E, Izbicki JR (2003) Chronic pancreatitis: etiology, pathogenesis, diagnosis, and treatment. Int J Colorectal Dis 18: 97–106PubMedGoogle Scholar
  2. Clain JE, Pearson RK (1999) Diagnosis of chronic pancreatitis. Is a gold standard necessary? Surg Clin North Am 79: 829–845PubMedCrossRefGoogle Scholar
  3. Lankisch PG (2001) Natural course of chronic pancreatitis. Pancreatology 1: 3–14PubMedCrossRefGoogle Scholar
  4. Otsuki M, Nishimori I, Hayakawa T, Hirota M, Ogawa M, Shimosegawa T (2004) Hereditary pancreatitis: clinical characteristics and diagnostic criteria in Japan. Pancreas 28: 200–206PubMedCrossRefGoogle Scholar
  5. Etemad B, Whitcomb DC (2001) Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology 120: 682–707PubMedCrossRefGoogle Scholar
  6. Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, Martin SP, Gates LK, Jr., Amann ST, Toskes PP, Liddle R, McGrath K, Uomo G, Post JC, Ehrlich GD (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14: 141–145PubMedCrossRefGoogle Scholar
  7. Simon P, Weiss FU, Sahin-Toth M, Parry M, Nayler O, Lenfers B, Schnekenburger J, Mayerle J, Domschke W, Lerch MM (2002) Hereditary pancreatitis caused by a novel PRSS1 mutation (Arg-122 → Cys) that alters autoactivation and autodegradation of cationic trypsinogen. J Biol Chem 277: 5404–5410PubMedCrossRefGoogle Scholar
  8. Chen JM, Mercier B, Audrezet MP, Raguenes O, Quere I, Ferec C (2001) Mutations of the pancreatic secretory trypsin inhibitor (PSTI) gene in idiopathic chronic pancreatitis. Gastroenterology 120: 1061–1064PubMedCrossRefGoogle Scholar
  9. Pfutzer RH, Barmada MM, Brunskill AP, Finch R, Hart PS, Neoptolemos J, Furey WF, Whitcomb DC (2000) SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology 119: 615–623PubMedCrossRefGoogle Scholar
  10. Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U, Landt O, Becker M (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25: 213–216PubMedCrossRefGoogle Scholar
  11. Bhatia E, Balasubramanium K, Rajeswari J, Kordonouri O, Witt H, Landt O, Simon P, Lerch MM (2003) Absence of association between SPINK1 trypsin inhibitor mutations and Type 1 or 2 diabetes mellitus in India and Germany. Diabetologia 46: 1710–1711PubMedCrossRefGoogle Scholar
  12. Weiss FU, Simon P, Witt H, Mayerle J, Hlouschek V, Zimmer KP, Schnekenburger J, Domschke W, Neoptolemos JP, Lerch MM (2003) SPINK1 mutations and phenotypic expression in patients with pancreatitis associated with trypsinogen mutations. J Med Genet 40: e40PubMedCrossRefGoogle Scholar
  13. Weiss FU, Simon P, Bogdanova N, Mayerle J, Dworniczak B, Horst J, Lerch MM (2005) Complete cystic fibrosis transmembrane conductance regulator gene sequencing in patients with idiopathic chronic pancreatitis and controls. Gut 54: 1456–1460PubMedCrossRefGoogle Scholar
  14. Bernardino AL, Guarita DR, Mott CB, Pedroso MR, Machado MC, Laudanna AA, Tani CM, Almeida FL, Zatz M (2003) CFTR, PRSS1 and SPINK1 mutations in the development of pancreatitis in Brazilian patients. Jop 4: 169–177PubMedGoogle Scholar
  15. Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS (1998) Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med 339: 653–638PubMedCrossRefGoogle Scholar
  16. Sharer N, Schwarz M, Malone G, Howarth A, Painter J, Super M, Braganza J (1998) Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 339: 645–652PubMedCrossRefGoogle Scholar
  17. Ockenga J, Stuhrmann M, Ballmann M, Teich N, Keim V, Dork T, Manns MP (2000) Mutations of the cystic fibrosis gene, but not cationic trypsinogen gene, are associated with recurrent or chronic idiopathic pancreatitis. Am J Gastroenterol 95: 2061–2067PubMedCrossRefGoogle Scholar
  18. Choudari CP, Imperiale TF, Sherman S, Fogel E, Lehman GA (2004) Risk of pancreatitis with mutation of the cystic fibrosis gene. Am J Gastroenterol 99: 1358–1363PubMedCrossRefGoogle Scholar
  19. Gelrud A, Sheth S, Banerjee S, Weed D, Shea J, Chuttani R, Howell DA, Telford JJ, Carr-Locke DL, Regan MM, Ellis L, Durie PR, Freedman SD (2004) Analysis of cystic fibrosis gener product (CFTR) function in patients with pancreas divisum and recurrent acute pancreatitis. Am J Gastroenterol 99: 1557–1562PubMedCrossRefGoogle Scholar
  20. Casals T, Aparisi L, Martinez-Costa C, Gimenez J, Ramos MD, Mora J, Diaz J, Boadas J, Estivill X, Farre A (2004) Different CFTR mutational spectrum in alcoholic and idiopathic chronic pancreatitis? Pancreas 28: 374–379PubMedCrossRefGoogle Scholar
  21. Estivill X, Bancells C, Ramos C (1997) Geographic distribution and regional origin of 272 cystic fibrosis mutations in European populations. The Biomed CF Mutation Analysis Consortium. Hum Mutat 10: 135–154PubMedCrossRefGoogle Scholar
  22. Stuhrmann M, Dork T, Fruhwirth M, Golla A, Skawran B, Antonin W, Ebhardt M, Loos A, Ellemunter H, Schmidtke J (1997) Detection of 100% of the CFTR mutations in 63 CF families from Tyrol. Clin Genet 52: 240–246PubMedCrossRefGoogle Scholar
  23. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM (2002) Cystic fibrosis: a worldwide analysis of CFTR mutations – correlation with incidence data and application to screening. Hum Mutat 19: 575–606PubMedCrossRefGoogle Scholar
  24. Homma T, Harada H, Koizumi M (1997) Diagnostic criteria for chronic pancreatitis by the Japan Pancreas Society. Pancreas 15: 14–15PubMedCrossRefGoogle Scholar
  25. de Vries HG, Collee JM, de Walle HE, van Veldhuizen MH, Smit Sibinga CT, Scheffer H, ten Kate LP (1997) Prevalence of delta F508 cystic fibrosis carriers in The Netherlands: logistic regression on sex, age, region of residence and number of offspring. Hum Genet 99: 74–79PubMedCrossRefGoogle Scholar
  26. Castellani C, Quinzii C, Altieri S, Mastella G, Assael BM (2001) A pilot survey of cystic fibrosis clinical manifestations in CFTR mutation heterozygotes. Genet Test 5: 249–254PubMedCrossRefGoogle Scholar
  27. Ammann RW (1997) A clinically based classification system for alcoholic chronic pancreatitis: summary of an international workshop on chronic pancreatitis. Pancreas 14: 215–221PubMedCrossRefGoogle Scholar
  28. Turcios NL (2005) Cystic fibrosis: an overview. J Clin Gastroenterol 39: 307–317PubMedCrossRefGoogle Scholar
  29. Ribeiro CM, Paradiso AM, Carew MA, Shears SB, Boucher RC (2005) Cystic fibrosis airway epithelial Ca2+ i signaling: the mechanism for the larger agonist-mediated Ca2+ i signals in human cystic fibrosis airway epithelia. J Biol Chem 280: 10202–10209PubMedCrossRefGoogle Scholar
  30. Egan ME, Glockner-Pagel J, Ambrose C, Cahill PA, Pappoe L, Balamuth N, Cho E, Canny S, Wagner CA, Geibel J, Caplan MJ (2002) Calcium-pump inhibitors induce functional surface expression of Delta F508-CFTR protein in cystic fibrosis epithelial cells. Nat Med 8: 485–492PubMedCrossRefGoogle Scholar
  31. De Boeck K, Weren M, Proesmans M, Kerem E (2005) Pancreatitis among patients with cystic fibrosis: correlation with pancreatic status and genotype. Pediatrics 115: e463–e469PubMedCrossRefGoogle Scholar
  32. Chu CS, Trapnell BC, Curristin S, Cutting GR, Crystal RG (1993) Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet 3: 151–156PubMedCrossRefGoogle Scholar
  33. Chillon M, Casals T, Mercier B, Bassas L, Lissens W, Silber S, Romey MC, Ruiz-Romero J, Verlingue C, Claustres M, et al (1995) Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 332: 1475–1480PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Heinz Zoller
    • 1
  • Margit Egg
    • 1
    • 4
  • Ivo Graziadei
    • 1
  • Marc Creus
    • 1
  • Andreas R. Janecke
    • 2
  • Judith Löffler-Ragg
    • 2
    • 3
  • Wolfgang Vogel
    • 1
  1. 1.Department of Medicine, Clinical Division of Gastroenterology and HepatologyInnsbruck Medical UniversityAustria
  2. 2.Department of Genetics, Molecular and Clinical Pharmacology, Division of Clinical GeneticsInnsbruck Medical UniversityAustria
  3. 3.Current address: Department of Medicine, Clinical Division of General Internal MedicineInnsbruck Medical UniversityAustria
  4. 4.Current address: Department of Zoology and Limnology, Technikerstrasse 25University of InnsbruckAustria

Personalised recommendations