Wiener klinische Wochenschrift

, Volume 119, Issue 13–14, pp 428–434 | Cite as

Oxidative stress in patients with COPD and pulmonary hypertension

  • Pavol Joppa
  • Darina Petrášová
  • Branislav Stančák
  • Zuzana Dorková
  • Ružena Tkáčová
Original Article

Summary

OBJECTIVE: Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Oxidant/antioxidant imbalance has also been reported in various forms of pulmonary hypertension. The present study aimed to assess systemic oxidative stress, as reflected by serum malondialdehyde (MDA) concentrations and activities of antioxidant enzymes in erythrocytes [glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT)] in patients with and without pulmonary hypertension secondary to COPD. PATIENTS AND METHODS: Seventy-five patients (58 male) with COPD (mean age 65.1 ± 1.2 years; mean smoking history 35.6 ± 3.8 pack-years) were studied. Twenty-one healthy non-smokers served as a control group. Pulmonary function was evaluated with body plethysmography; mean and systolic pulmonary artery pressures (Ppa) were assessed with Doppler echocardiography. Serum concentrations of MDA and activities of GPX, SOD and CAT in washed red blood cells were measured using spectrophotometry. RESULTS: Pulmonary hypertension was present in 28 patients with COPD (systolic Ppa: 46.4 ± 2.3 mmHg; mean Ppa: 26.0 ± 1.9 mmHg) and absent in 47 (systolic Ppa: 22.9 ± 0.8 mmHg; mean Ppa: 13.4 ± 0.6 mmHg). Compared with the healthy control group, all the patients (with or without pulmonary hypertension) had higher serum MDA concentrations (1.5 ± 0.1 versus 2.3 ± 0.1 versus 2.3 ± 0.1 nmol/mL, ANOVA, P < 0.001) and lower erythrocyte GPX activity (51.3 ± 3.2 versus 42.2 ± 2.0 versus 41.3 ± 2.5 U/g Hb, P = 0.029), whereas SOD (1121.1 ± 29.0 versus 1032.6 ± 21.8 versus 1032.7 ± 36.2 U/g Hb, P = 0.063) and CAT activities (4.9 ± 0.2 versus 4.6 ± 0.1 versus 4.7 ± 0.2 U/g Hb; P= 0.454) were similar. No differences were observed in serum MDA concentrations or activities of GPX, SOD and CAT in erythrocytes between COPD patients with and without pulmonary hypertension. CONCLUSION: The study demonstrates the presence of oxidative/antioxidative imbalance in the systemic circulation in patients with COPD: compared with healthy subjects, COPD patients had higher serum MDA concentrations and lower GPX activity in erythrocytes. The magnitudes of the increase in MDA and reduction in GPX activity were similar in COPD patients with pulmonary hypertension and in those with normal pulmonary artery pressures.

Keywords

COPD Pulmonary hypertension Oxidative stress Lipid peroxidation Antioxidants 

Oxidativer Stress bei Patienten mit COPD und pulmonaler Hypertonie

Zusammenfassung

ZIEL: Der oxidative Stress spielt eine wichtige Rolle bei der Entstehung der chronisch obstruktiven Lungenerkrankung (COPD). Ein Ungleichgewicht zwischen Oxidantien und Antioxidantien wurde auch bei verschiedenen Formen der pulmonalen Hypertonie beschrieben. Ziel der vorliegenden Studie war, den oxidativen Stress, wie er durch die Konzentrationen des Malondialdehyds (MDA) und die Aktivitäten der antioxydativen Enzyme Gluthathion Peroxidase (GPX), Superoxid Dismutase (SOD) und Katalase (CAT) reflektiert wird, bei Patienten mit und ohne COPD-bedingter pulmonaler Hypertonie zu erfassen. PATIENTEN UND METHODEN: 75 Patienten (58 Männer) mit einer COPD (mittleres Alter 65,1 ± 1,2 Jahre, Raucher-Anamnese: 35,6 ± 3,8 Pack Years) wurden untersucht. 21 gesunde Nichtraucher stellten die Kontrollgruppe dar. Die Lungenfunktion wurde durch Body Plethysmographie, der mittlere und der systolische Druck in der Pulmonalarterie (Ppa) durch Doppler-Echokardiographie erhoben. Die Serumkonzentrationen der MDA und die Aktivitäten der GPX, SOD und CAT wurden mittels Spektrophotometrie gemessen. ERGEBNISSE: Eine pulmonale Hypertonie lag bei 28 Patienten vor (systolische Ppa: 46,4 ± 2,3 mmHg; mittlere Ppa: 26,0 ± 1,9 mmHg) während 47 Patienten mit COPD einen normalen Druck in der Pulmonalarterie aufwiesen (systolische Ppa: 22,9 ± 0,8 mmHg; mittlere Ppa: 13,4 ± 0,6 mmHg). Im Vergleich zur gesunden Kontrollgruppe hatten sowohl die Patienten ohne als auch die mit pulmonaler Hypertonie höhere MDA Konzentrationen (1,5 ± 0,1 versus 2,3 ± 0,1 versus 2,3 ± 0,1 nmol/mL, ANOVA, p < 0,001) und niedrigere Erythrozyten GPX-Aktivitäten (51,3 ± 3,2 versus 42,2 ± 2,0 versus 41,3 ± 2,5 U/g Hb, p = 0,029). Die Aktivitäten der SOD und CAT waren in allen untersuchten Gruppen ähnlich (SOD: 1121,1 ± 29,0 versus 1032,6 ± 21,8 versus 1032,7 ± 36,2 U/g Hb, p = 0,063; CAT: 4,9 ± 0,2 versus 4,6 ± 0,1 versus 4,7 ± 0,2 U/g Hb; p = 0,454). Der statistische Vergleich der Serumkonzentrationen der MDA bzw. der Aktivitäten aller Enzyme bei den Patienten mit pulmonaler Hypertonie mit den bei den Patienten mit normalem Pulmonalarteriendruck erhobenen Werten ergab keine Signifikanz. SCHLUSSFOLGERUNG: Die vorliegende Studie zeigt das Vorliegen eines oxidativ/antioxidativen Ungleichgewichtes im systemischen Kreislauf von Patienten mit COPD: Im Vergleich zu Gesunden hatten die COPD Patienten höhere MDA Serumkonzentrationen und niedrigere GPX Erythrozyten-Aktivität. Die vergleichsweise Erhöhung der MDA-Konzentrationen, bzw. Erniedrigung der GPX-Aktivität war unabhängig vom Vorliegen einer pulmonalen Hypertonie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacNee W (2005) Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2: 50–60PubMedCrossRefGoogle Scholar
  2. Domej W, Földes-Papp Z, Flögel E, Haditsch B (2006) Chronic obstructive pulmonary disease and oxidative stress. Curr Pharmaceut Biotech 7: 117–123CrossRefGoogle Scholar
  3. Barbera JA, Peinado VI, Santos S (2003) Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J 21: 892–905PubMedCrossRefGoogle Scholar
  4. Hoshikawa Y, Ono S, Suzuki S, Tanita T, Chida M, Song C, Noda M, Tabata T, Voelkel NF, Fujimura S (2001) Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J Appl Physiol 90: 1299–1306PubMedGoogle Scholar
  5. Mathew R, Yuan N, Rosenfeld L, Gewitz MH, Kumar A (2002) Effects of monocrotaline on endothelial nitric oxide synthase expression and sulfhydryl levels in rat lungs. Heart Dis 4: 152–158PubMedCrossRefGoogle Scholar
  6. Souza-Costa DC, Zerbini T, Metzger IF, Teixeira Rocha JB, Gerlach RF, Tanus-Santos JE (2005) L-arginine attenuates acute pulmonary embolism-induced oxidative stress and pulmonary hypertension. Nitric Oxide 12: 9–14PubMedCrossRefGoogle Scholar
  7. Kaneko FT, Arroliga AC, Dweik RA, Comhair SA, Laskowski D, Oppedisano R, Thomassen MJ, Erzurum SC (1998) Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med 158: 917–923PubMedGoogle Scholar
  8. Cracowski JL, Cracowski C, Bessard G, Pepin JL, Bessard J, Schwebel C, Stanke-Labesque F, Pison C (2001) Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med 164: 1038–1042PubMedGoogle Scholar
  9. Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC, Voelkel NF (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169: 764–769PubMedCrossRefGoogle Scholar
  10. Stein CM, Tanner SB, Awad JA, Roberts LJ, Morrow JD (1996) Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arthritis Rheum 39: 1146–1150PubMedCrossRefGoogle Scholar
  11. Celli BR, MacNee W, and committee members (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23: 932–946PubMedCrossRefGoogle Scholar
  12. Ziesche R (2003) Consensus recommendations of the Pulmonary Arterial Hypertension Study Group of the Austrian Society of Lung Diseases and Tuberculosis. Wien Klin Wochenschr 115: 351–365PubMedCrossRefGoogle Scholar
  13. Otto CM (2000) Echocardiographic evaluation of left and right ventricular systolic function. In: Textbook of clinical echocardiography, 3rd edn. Saunders, St. Louis Philadelphia London Sydney Toronto, pp 100–131Google Scholar
  14. Currie PJ, Seward JB, Chan KL, Fyfe DA, Hagler DJ, Mair DD, Reeder GS, Nishimura RA, Tajik AJ (1985) Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler – catheterization study in 127 patients. J Am Coll Cardiol 6: 750–756PubMedCrossRefGoogle Scholar
  15. Barst RJ, McGoon M, Torbicki A, Sitbon O, Krowka MJ, Olschewski H, Gaine S (2004) Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol 43 [Suppl S]: 40S–47SPubMedCrossRefGoogle Scholar
  16. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15: 212–216PubMedCrossRefGoogle Scholar
  17. Andersen HR, Nielsen JB, Nielsen F, Grandjean P (1997) Antioxidative enzyme activities in human erythrocytes. Clin Chem 43: 562–568PubMedGoogle Scholar
  18. Sahin U, Unlu M, Ozguner F, Sutcu R, Akkaya A, Delibas N (2001) Lipid peroxidation and glutathione peroxidase activity in chronic obstructive pulmonary disease exacerbation: prognostic value of malondialdehyde. J Basic Clin Physiol Pharmacol 12: 59–68PubMedGoogle Scholar
  19. Tug T, Karatas F, Terzi SM (2004) Antioxidant vitamins (A, C and E) and malondialdehyde levels in acute exacerbation and stable periods of patients with chronic obstructive pulmonary disease. Clin Invest Med 27: 123–128PubMedGoogle Scholar
  20. Daga MK, Chhabra R, Sharma B, Mishra TK (2003) Effects of exogenous vitamin E supplementation on the levels of oxidants and antioxidants in chronic obstructive pulmonary disease. J Biosci 28: 7–11PubMedGoogle Scholar
  21. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15: 316–328PubMedCrossRefGoogle Scholar
  22. Corradi M, Pignatti P, Manini P, Andreoli R, Goldoni M, Poppa M, Moscato G, Balbi B, Mutti A (2004) Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. Eur Respir J 24: 1011–1017PubMedCrossRefGoogle Scholar
  23. Kluchová Z, Petrášová D, Joppa P, Dorková Z, Tkáčová R (2006) The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiol Res MEDLINE Feb 23, Epub ahead of printGoogle Scholar
  24. Ochs-Balcom HM, Grant BJ, Muti P, Sempos CT, Freudenheim JL, Browne RW, McCann SE, Trevisan M, Cassano PA, Iacoviello L, Schunemann HJ (2006) Antioxidants, oxidative stress, and pulmonary function in individuals diagnosed with asthma or COPD. Eur J Clin Nutr 60: 991–999PubMedCrossRefGoogle Scholar
  25. Kessler R, Faller M, Weitzenblum E, Chaouat A, Aykut A, Ducolone A, Ehrhart M, Oswald-Mammosser M (2001) "Natural history" of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease. Am J Respir Crit Care Med 164: 219–224PubMedGoogle Scholar
  26. Santos MC, Oliveira AL, Viegas-Crespo AM, Vicente L, Barreiros A, Monteiro P, Pinheiro T, Bugalho de Almeida A (2004) Systemic markers of the redox balance in chronic obstructive pulmonary disease. Biomarkers 9: 461–469PubMedCrossRefGoogle Scholar
  27. McQuaid KE, Keenan AK (1997) Endothelial barrier dysfunction and oxidative stress: roles for nitric oxide? Physiological society symposium: Impaired endothelial and smooth muscle function in oxidative stress. Exp Physiol 82: 369–376PubMedGoogle Scholar
  28. Wolin MS, Burke-Wolin TM, Mohazzab-H. KM (1999) Roles for NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms. Respir Physiol 115: 229–238PubMedCrossRefGoogle Scholar
  29. BelAiba RS, Djordjevic T, Bonello S, Flugel D, Hess J, Kietzmann T, Gorlach A (2004) Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary smooth muscle cells. Biol Chem 385: 249–257PubMedCrossRefGoogle Scholar
  30. Seekamp A, Lalonde C, Zhu DG, Demling R (1988) Catalase prevents prostanoid release and lung lipid peroxidation after endotoxemia in sheep. J Appl Physiol 65: 1210–1216PubMedGoogle Scholar
  31. Carpagnano GE, Kharitonov SA, Foschino-Barbaro MP, Resta O, Gramiccioni E, Barnes PJ (2004) Supplementary oxygen in healthy subjects and those with COPD increases oxidative stress and airway inflammation. Thorax 59: 1016–1019PubMedCrossRefGoogle Scholar
  32. Tramarin R, Torbicki A, Marchandise B, Laaban JP, Morpurgo M (1991) Doppler echocardiographic evaluation of pulmonary artery pressure in chronic obstructive pulmonary disease. Eur Heart J 12: 103–111PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Pavol Joppa
    • 1
  • Darina Petrášová
    • 2
  • Branislav Stančák
    • 3
  • Zuzana Dorková
    • 1
  • Ružena Tkáčová
    • 1
  1. 1.Department of Respiratory Medicine and Tuberculosis, Faculty of MedicineP.J. Šafárik University and L. Pasteur Teaching HospitalKošiceSlovakia
  2. 2.Institute of Experimental Medicine, Faculty of MedicineP.J. Šafárik UniversityKošiceSlovakia
  3. 3.East-Slovakian Institute for Cardiovascular DiseasesKošiceSlovakia

Personalised recommendations