Wiener klinische Wochenschrift

, Volume 119, Issue 15–16, pp 456–462

Are probiotics detectable in human feces after oral uptake by healthy volunteers?

  • Martina Prilassnig
  • Christoph Wenisch
  • Florian Daxboeck
  • Gebhard Feierl
Original Article


GOALS: Assessment of the presence of probiotic bacteria in feces after oral ingestion. BACKGROUND: Probiotic bacteria are said to have beneficial effects on the host. As a precondition for any effect, probiotic strains must survive passage through the gastrointestinal tract. STUDY: The feces of seven volunteers were analyzed for the presence of probiotic strains after one week's oral ingestion of each of six commercially available products: E. coli Nissle 0.5–5 × 109 cells (Mutaflor®), Enterococcus faecium SF 68 7.5 × 107 cells (Bioflorin®), Lactobacillus acidophilus and Bifidobacterium infantis both 1 × 109 cells (Infloran®), Lactobacillus gasseri and Bifidobacterium longum both 1 × 108 cells (Omniflora®), Lactobacillus casei rhamnosus 1 × 109 cells (Antibiophilus®), and yoghurt enriched with Lactobacillus casei Immunitas 1 × 1010 cells (Actimel®). Ten colonies were selected from each stool sample, and DNA was extracted and typed using random amplification of polymorphic DNA (RAPD). Typing patterns of the ingested probiotics and the fecal isolates were compared. RESULTS: Fingerprints identical to the ingested probiotic strains were recovered from fecal samples of 4/7 volunteers after one week of Mutaflor®, from 4/6 after taking Bioflorin®, and from 1/6 after Infloran®. Cultivation of strains of the same species from fecal specimens was negative after consumption of Antibiophilus®, Omniflora® and Actimel®. CONCLUSIONS: After oral consumption of probiotics, E. coli and enterococci could be detected in stool samples (57% and 67%, respectively). In contrast, with only one exception, ingested lactobacilli and bifidobacteria could not be detected in human feces.


Probiotics Intestinal colonization Random amplification of polymorphic DNA 

Sind Probiotika nach der oralen Aufnahme auch im Stuhl vorhanden?


ZIEL: Analyse der Anwesenheit von kommerziellen Probiotika in Stuhl nach oraler Aufnahme. HINTERGRUND: Probiotika wird häufig ein günstiger Effekt auf die Gesundheit nachgesagt. Eine Bedingung für jeglichen Effekt ist dabei das Überleben von Bakterien während der gastrointestinalen Passage. STUDIE: Nach einer einwöchigen oralen Aufnahme von sechs kommerziellen Probiotikapräparaten [E.coli Nissle 0.5–5 × 109 (Mutaflor®), Enterococcus faecium SF 68 7.5 × 107 (Bioflorin®), Lactobacillus acidophilus and Bifidobacterium infantis both 1 × 109 (Infloran®), Lactobacillus gasseri 108 and Bifidobacterium longum 108 (Omniflora®), Lactobacillus casei rhamnosus 109 (Antibiophilus®), und Yoghurt welches mittels Lactobacillus casei "immunitass" 1010 angereichert wurde (Actimel®)] wurde die An- bzw. Abwesenheit der ausgewiesenen Keime im Stuhl untersucht. Dabei wurden von jeder Stuhlprobe 10 Kolonien untersucht. Nach der DNA Extraktion kam die randomisierte Amplifikation polymorpher DNA zum Einsatz (RAPD). Danach wurden die RAPD Ergebnisse der Probiotikakeime direkt aus der kommerziellen Präparation mit den gewonnenen Stuhlisolaten verglichen. RESULTATE: Identische RAPD Ergebnisse zu den aufgenommenen Probiotika fand man bei den Stuhlproben von 4/7 Personen nach einer Woche Mutaflor®, bei 4/6 nach Bioflorin®, bei 1/6 nach Infloran®. Nach der Einahme von Antibiophilus®, Omniflora® oder Actimel® war eine Kultur von Bakterien der selben Species in Stuhlproben nicht möglich. SCHLUSSFOLGERUNG: Nach der oralen Einnahme von probiotischen E. coli und Enterokokken können die selben Erreger in Stuhlproben in 57 bzw 67% der studierten Population gefunden werden. Im Gegensatz dazu können oral aufgenommene Laktobazillen oder Bifidobakterien im Stuhl nicht gefunden werden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Metchnikoff E (1907) The prolongation of life. Heinemann, LondonGoogle Scholar
  2. Torriani S, Zapparoli G, Dellaglio F (1999) Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Appl Environ Microbiol 65 (10): 4351–4356PubMedGoogle Scholar
  3. FAO/WHO. Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report.
  4. Gionchetti P, Rizzello F, Venturi A, et al (2000) Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 119 (2): 305–309PubMedCrossRefGoogle Scholar
  5. Majamaa H, Isolauri E, Saxelin M, Vesikari T (1995) Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J Pediatr Gastroenterol Nutr 20 (3): 333–338PubMedCrossRefGoogle Scholar
  6. Gorbach SL, Chang TW, Goldin B (1987) Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 2 (8574): 1519PubMedCrossRefGoogle Scholar
  7. Elmer GW, McFarland LV (2001) Biotherapeutic agents in the treatment of infectious diarrhea. Gastroenterol Clin North Am 30 (3): 837–854PubMedCrossRefGoogle Scholar
  8. Gill HS, Cross ML, Rutherfurd KJ, Gopal PK (2001) Dietary probiotic supplementation to enhance cellular immunity in the elderly. Br J Biomed Sci 58 (2): 94–96PubMedGoogle Scholar
  9. Morelli L, Zonenschain D, Callegari ML, Grossi E, Maisano F, Fusillo M (2003) Assessment of a new synbiotic preparation in healthy volunteers: survival, persistence of probiotic strains and its effect on the indigenous flora. Nutr J 2 (1): 11PubMedCrossRefGoogle Scholar
  10. Collins MD, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69 (5): 1052S–1057SPubMedGoogle Scholar
  11. Reid G, Sanders ME, Gaskins HR, et al (2003) New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol 37 (2): 105–118PubMedCrossRefGoogle Scholar
  12. de Champs C, Maroncle N, Balestrino D, Rich C, Forestier C (2003) Persistence of colonization of intestinal mucosa by a probiotic strain, Lactobacillus casei subsp. rhamnosus Lcr35, after oral consumption. J Clin Microbiol 41 (3): 1270–1273PubMedCrossRefGoogle Scholar
  13. Alander M, Satokari R, Korpela R, et al (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65 (1): 351–354PubMedGoogle Scholar
  14. Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357 (9262): 1076–1079PubMedCrossRefGoogle Scholar
  15. Bengmark S (2001) Pre-, pro- and synbiotics. Curr Opin Clin Nutr Metab Care 4 (6): 571–579PubMedCrossRefGoogle Scholar
  16. Saarela M, Lahteenmaki L, Crittenden R, Salminen S, Mattila-Sandholm T (2002) Gut bacteria and health foods – the European perspective. Int J Food Microbiol 78 (1–2): 99–117PubMedCrossRefGoogle Scholar
  17. Mitra AK, Rabbani GH (1990) A double-blind, controlled trial of bioflorin (Streptococcus faecium SF68) in adults with acute diarrhea due to Vibrio cholerae and enterotoxigenic Escherichia coli. Gastroenterology 99 (4): 1149–1152PubMedGoogle Scholar
  18. Wunderlich PF, Braun L, Fumagalli I, et al (1989) Double-blind report on the efficacy of lactic acid-producing Enterococcus SF68 in the prevention of antibiotic-associated diarrhoea and in the treatment of acute diarrhoea. J Int Med Res 17 (4): 333–338PubMedGoogle Scholar
  19. Isolauri E, Juntunen M, Rautanen T, Sillanaukee P, Koivula T (1991) A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88 (1): 90–97PubMedGoogle Scholar
  20. Isolauri E, Kaila M, Mykkanen H, Ling WH, Salminen S (1994) Oral bacteriotherapy for viral gastroenteritis. Dig Dis Sci 39 (12): 2595–2600PubMedCrossRefGoogle Scholar
  21. Kaila M, Isolauri E, Saxelin M, Arvilommi H, Vesikari T (1995) Viable versus inactivated lactobacillus strain GG in acute rotavirus diarrhoea. Arch Dis Child 72 (1): 51–53PubMedGoogle Scholar
  22. Kaila M, Isolauri E, Soppi E, Virtanen E, Laine S, Arvilommi H (1992) Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr Res 32 (2): 141–144PubMedCrossRefGoogle Scholar
  23. Shornikova AV, Isolauri E, Burkanova L, Lukovnikova S, Vesikari T (1997) A trial in the Karelian Republic of oral rehydration and Lactobacillus GG for treatment of acute diarrhoea. Acta Paediatr 86(5): 460–465PubMedGoogle Scholar
  24. Pant AR, Graham SM, Allen SJ, et al (1996) Lactobacillus GG and acute diarrhoea in young children in the tropics. J Trop Pediatr 42 (3): 162–165PubMedCrossRefGoogle Scholar
  25. Food Agriculture Organization: Guidelines for the evaluation of probiotics in food.
  26. del Campo R, Bravo D, Cantón R, Ruiz-Garbajosa P, García-Albiach R, Montesi-Libois A, Yuste FJ, Abraira V, Baquero F (2005) Scarce evidence of yoghurt lactic acid bacteria in human feces after daily consumption by healthy volunteers. Appl Environ Microbiol 71: 547–549PubMedCrossRefGoogle Scholar
  27. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18 (24): 7213–7218PubMedCrossRefGoogle Scholar
  28. Mileham AJ (1997) Identification of microorganisms using random primed PCR. Mol Biotechnol 8 (2): 139–145PubMedGoogle Scholar
  29. Kimura K, McCartney AL, McConnell MA, Tannock GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 63 (9): 3394–3398PubMedGoogle Scholar
  30. McCartney AL, Wenzhi W, Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl Environ Microbiol 62 (12): 4608–4613PubMedGoogle Scholar
  31. Holdeman LV, Cato EP, Moore WEC (1973) Anaerobe laboratory manual. VPI Anaerob Laboratory, Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  32. Scardovi V (1986) Genus Bifidobacterium Orla-Jensen 1924 472AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey's Manual of Systematic Bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1418–1434Google Scholar
  33. Hartley CL, Clements HM, Linton KB (1977) Escherichia coli in the faecal flora of man. J Appl Bacteriol 43 (2): 261–269PubMedGoogle Scholar
  34. Satokari RM, Vaughan EE, Smidt H, Saarela M, Matto J, de Vos WM (2003) Molecular approaches for the detection and identification of bifidobacteria and lactobacilli in the human gastrointestinal tract. Syst Appl Microbiol 26 (4): 572–584PubMedCrossRefGoogle Scholar
  35. Gardiner GE, Heinemann C, Bruce AW, Beuerman D, Reid G (2002) Persistence of Lactobacillus fermentum RC-14 and Lactobacillus rhamnosus GR-1 but not L. rhamnosus GG in the human vagina as demonstrated by randomly amplified polymorphic DNA. Clin Diagn Lab Immunol 9 (1): 92–96PubMedCrossRefGoogle Scholar
  36. Maroye P, Doermann HP, Rogues AM, Gachie JP, Megraud F (2000) Investigation of an outbreak of Ralstonia pickettii in a paediatric hospital by RAPD. J Hosp Infect 44 (4): 267–272PubMedCrossRefGoogle Scholar
  37. Krzewinski JW, Nguyen CD, Foster JM, Burns JL (2001) Use of random amplified polymorphic DNA PCR to examine epidemiology of Stenotrophomonas maltophilia and Achromobacter (Alcaligenes) xylosoxidans from patients with cystic fibrosis. J Clin Microbiol 39 (10): 3597–3602PubMedCrossRefGoogle Scholar
  38. Tilsala-Timisjarvi A, Alatossava T (1998) Strain-specific identification of probiotic Lactobacillus rhamnosus with randomly amplified polymorphic DNA-derived PCR primers. Appl Environ Microbiol 64 (12): 4816–4819PubMedGoogle Scholar
  39. Vasquez A, Jakobsson T, Ahrne S, Forsum U, Molin G (2002) Vaginal lactobacillus flora of healthy Swedish women. J Clin Microbiol 40 (8): 2746–2749PubMedCrossRefGoogle Scholar
  40. Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66 (5): 2263–2266PubMedCrossRefGoogle Scholar
  41. Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66 (6): 2578–2588PubMedCrossRefGoogle Scholar
  42. Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahrne S, Bengmark S (1993) Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 59 (1): 15–20PubMedGoogle Scholar
  43. Johansson ML, Nobaek S, Berggren A, et al (1998) Survival of Lactobacillus plantarum DSM 9843 (299v), and effect on the short-chain fatty acid content of faeces after ingestion of a rose-hip drink with fermented oats. Int J Food Microbiol 42 (1–2): 29–38PubMedCrossRefGoogle Scholar
  44. Saxelin M, Pessi T, Salminen S (1995) Fecal recovery following oral administration of Lactobacillus strain GG (ATCC 53103) in gelatine capsules to healthy volunteers. Int J Food Microbiol 25 (2): 199–203PubMedCrossRefGoogle Scholar
  45. Lidbeck A, Gustafsson JA, Nord CE (1987) Impact of Lactobacillus acidophilus supplements on the human oropharyngeal and intestinal microflora. Scand J Infect Dis 19 (5): 531–537PubMedGoogle Scholar
  46. Alander M, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A (1997) Recovery of Lactobacillus rhamnosus GG from human colonic biopsies. Lett Appl Microbiol 24 (5): 361–364PubMedCrossRefGoogle Scholar
  47. Kok RG, de Waal A, Schut F, Welling GW, Weenk G, Hellingwerf KJ (1996) Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Appl Environ Microbiol 62 (10): 3668–3672PubMedGoogle Scholar
  48. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S (1992) Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci 37 (1): 121–128PubMedCrossRefGoogle Scholar
  49. Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, et al (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65 (11): 4949–4956PubMedGoogle Scholar
  50. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67 (6): 2578–2585PubMedCrossRefGoogle Scholar
  51. Marteau P, Pochart P, Dore J, Bera-Maillet C, Bernalier A, Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67 (10): 4939–4942PubMedCrossRefGoogle Scholar
  52. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68 (7): 3401–3407PubMedCrossRefGoogle Scholar
  53. Mai V, Morris JG Jr (2004) Colonic bacterial flora: changing understandings in the molecular age. J Nutr 134 (2): 459–464PubMedGoogle Scholar
  54. O'Sullivan DJ (2000) Methods for analysis of the intestinal microflora. Curr Issues Intest Microbiol 1 (2): 39–50PubMedGoogle Scholar
  55. Walter J, Tannock GW, Tilsala-Timisjarvi A, et al (2000) Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66 (1): 297–303PubMedCrossRefGoogle Scholar
  56. Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B (2001) Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol 30 (1): 49–52PubMedCrossRefGoogle Scholar
  57. Kullen MJ, Amann MM, O'Shaughnessy MJ, O'Sullivan DJ, Busta FF, Brady LJ (1997) Differentiation of ingested and endogenous bifidobacteria by DNA fingerprinting demonstrates the survival of an unmodified strain in the gastrointestinal tract of humans. J Nutr 127 (1): 89–94PubMedGoogle Scholar
  58. Macfarlane GT, Cummings JH (2002) Probiotics, infection and immunity. Curr Opin Infect Dis 15 (5): 501–506PubMedGoogle Scholar
  59. Lick S, Drescher K, Heller KJ (2001) Survival of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in the terminal ileum of fistulated Gottingen minipigs. Appl Environ Microbiol 67 (9): 4137–4143PubMedCrossRefGoogle Scholar
  60. Lodinova-Zadnikova R, Sonnenborn U (1997) Effect of preventive administration of a nonpathogenic Escherichia coli strain on the colonization of the intestine with microbial pathogens in newborn infants. Biol Neonate 71 (4): 224–232PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Martina Prilassnig
    • 1
  • Christoph Wenisch
    • 1
  • Florian Daxboeck
    • 2
  • Gebhard Feierl
    • 3
  1. 1.4. Medizinische Abteilung mit Infektions- und TropenmedizinSMZ-Süd-Kaiser Franz Josef SpitalViennaAustria
  2. 2.Department of Hospital HygieneUniversity of ViennaViennaAustria
  3. 3.Institute of HygieneMedical University of GrazGrazAustria

Personalised recommendations