Severe Traumatic Brain Injury in Austria III: Prehospital status and treatment

  • Lucia Lenartova
  • Ivan Janciak
  • Ingrid Wilbacher
  • Martin Rusnak
  • Walter Mauritz
Original Article

Summary

OBJECTIVES: The goal of this paper is to describe prehospital status and treatment of patients with severe TBI in Austria. PATIENTS AND METHODS: Data sets from 396 patients with severe TBI (Glasgow Coma Scale score < 9) included by 5 Austrian hospitals were available. The analysis focused on incidence and/or degree of severity of typical clinical signs, frequency of use of different management options, and association with outcomes for both. ICU mortality, 90-day mortality, final outcome (favorable = good recovery or moderate disability; unfavorable = severe disability, vegetative state, or death) after 6 or 12 months, and ratio of observed (90-day) to predicted mortality (O/E ratio) are reported for the selected parameters. Chi2-test, t-test, Fisher's exact test, and logistic regression were used to identify significant (p < 0.05) differences for association with survival and favorable outcome (both coded as 1). RESULTS: The majority of patients were male (72%), mean age was 49 ± 21 years, mean injury severity score (ISS) was 27 ± 17, mean first GCS score was 5.6 ± 2.9, and expected hospital survival was 63 ± 30%. ICU mortality was 32%, 90-day mortality was 37%, and final outcome was favorable in 35%, unfavorable in 53%, unknown in 12%. We found that age > 60 years, ISS > 50 points, GCS score < 4, bilateral changes in pupil size and reactivity, respiratory rate < 10/min, systolic blood pressure (SBP) < 90 mm Hg, and heart rate < 60/min were associated with significantly higher ICU and 90-day mortality rates, and lower rates of favorable outcome. With regard to prognostic value the GCS motor response score is identical to the full GCS score. Administration of > 1000 ml of fluid and helicopter transport were associated with better outcomes than expected, while endotracheal intubation in the field had neither a positive nor a negative effect on outcomes. Administration of no or < 500 ml of fluids was associated with worse outcomes than expected. Outcomes were better than expected in the few patients (5%) who received hypertonic saline. CONCLUSIONS: Age, ISS, and initial neuro status are the factors most closely associated with outcome. Hypotension must be avoided. Fluids should be given to restore and/or maintain SBP > 110 mm Hg. Helicopter transport should be arranged for more seriously injured patients.

Keywords

Brain injury Traumatic Outcome Prehospital Glasgow Coma Scale Vital signs Fluid administration Transport 

Schweres Schädelhirntrauma in Österreich III: Präklinischer Status und Erstversorgung

Zusammenfassung

ZIELE: Das Ziel der vorliegenden Arbeit ist es, präklinischen Status und präklinisches Management von Patienten mit schwerem Schädel-Hirn-Trauma (SHT) darzustellen. PATIENTEN UND METHODEN: Es standen Datensätze von 396 Patienten mit schwerem SHT (Glasgow Coma Scale < 9) zur Verfügung, die von 5 österreichischen Zentren in die Studie inkludiert worden waren. Analysiert wurden Inzidenz und Schweregrad typischer klinischer Symptome und die Häufigkeit der Verwendung verschiedener Behandlungsoptionen, und der Zusammenhang mit dem Behandlungsergebnis. Für Symptome und Behandlungsoptionen wurden ICU- und 90-Tage-Mortalität, Endzustand nach 6 oder 12 Monaten (gut = Normalzustand oder leichte Behinderung, schlecht = schwere Behinderung, vegetativer Zustand oder Tod), und die O/E ratio (Verhältnis von beobachteter zu erwarteter Mortalität) erhoben. Statistik: Es kamen Chi2-test, t-test, Fisher's exact test, und logistische Regression zur Anwendung; ein p < 0,05 wurde als signifikant angesehen. ERGEBNISSE: Die Mehrzahl (72%) der Patienten war männlich, das Alter betrug 49 ± 21 Jahre, der mittlere injury severity score (ISS) war 27 ± 17, die mittlere GCS betrug 5,6 ± 2,9, und die erwartete Überlebensrate lag bei 63 ± 30%. Die ICU-Mortalität lag bei 32%, und die 90-Tage-Mortalität bei 37%. Das Ergebnis war "gut" bei 35%, "schlecht" bei 53%, und unbekannt bei 12% der Patienten. Es fand sich, dass Alter > 60 a, ISS > 50, GCS score < 4, bilaterale Pupillenveränderungen, Atemfrequenz < 10/min, SBP < 90 mm Hg, und Herzfrequenz < 60/min mit signifikant erhöhter ICU- und 90-Tage-Mortalität und schlechtem Ergebnisses einhergingen. Zur Klassifikation von Patienten mit SHT können anstelle der gesamten Punktezahl der GCS auch nur die Punkte für die motorische Antwort verwendet werden. Die Gabe von > 1000 ml Volumen sowie Hubschraubertransport waren mit besserem Ergebnis als erwartet assoziiert, während die endotracheale Intubation weder einen positiven noch einen negativen Effekt hatte. Unterlassen der Volumentherapie oder Gabe von < 500 ml Volumen hatte ein schlechteres Ergebnis als erwartet zur Folge. Das Ergebnis war besser als erwartet bei den wenigen Patienten (5%) die hypertones NaCl erhalten hatten. SCHLUSSFOLGERUNGEN: Für das Behandlungsergebnisse dürften vor allem Alter, ISS und initialer neurologischer Zustand wesentlich sein. Hypotension muss vermieden werden. Es sollte rasch ausreichend Volumen gegeben werden, um einen SBP > 110 mm Hg zu erreichen oder zu halten. Für schwer verletzte Patienten mit SHT sollte ein Hubschraubertransport arrangiert werden.

References

  1. Rusnak M, Janciak I, Majdan M, Wilbacher I, Mauritz W; for the Austrian Severe TBI Study Investigators (2007) Severe traumatic brain injury in Austria I: introduction to the study. Wien Klin Wochenschr 119: 23–28CrossRefPubMedGoogle Scholar
  2. Marshall LF, Becker DP, Bowers SA, et al (1983) The National Traumatic Coma Data Bank. Part 1: design, purpose, goals, and results. J Neurosurg 59: 276–284CrossRefPubMedGoogle Scholar
  3. Boyd CR, Tolson MA, Copes WS (1987) Evaluating trauma care: the TRISS method. Trauma Score and the Injury Severity Score. J Trauma 27: 370–378CrossRefPubMedGoogle Scholar
  4. Downloaded from www.xlstat.com/
  5. Teasdale G, Jennett B (1976) Assessment and prognosis of coma after head injury. Acta Neurochir (Wien) 34: 45–55CrossRefGoogle Scholar
  6. Balestreri M, Czosnyka M, Chatfield DA, Steiner LA, Schmidt EA, Smielewski P, Matta B, Pickard JD (2004) Predictive value of Glasgow Coma Scale after brain trauma: change in trend over the past ten years. J Neurol Neurosurg Psychiatry 75 (1): 161–162PubMedGoogle Scholar
  7. The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care (2000) Guidelines for the management of severe brain trauma. J Neurotrauma 17: 457–627CrossRefGoogle Scholar
  8. Choi SC, Narayan RK, Anderson RL, Ward JD (1988) Enhanced specificity of prognosis in severe head injury. J Neurosurg 69: 381–385CrossRefPubMedGoogle Scholar
  9. Tien HC, Cunha JR, Wu SN, Chughtai T, Tremblay LN, Brenneman FD, Rizoli SB (2006) Do trauma patients with a glasgow coma scale score of 3 and bilateral fixed and dilated pupils have any chance of survival? J Trauma 60: 274–278CrossRefPubMedGoogle Scholar
  10. Zafonte RD, Hammond FM, Mann NR, Wood DL, Millis SR, Black KL (1996) Revised trauma score: an additive predictor of disability following traumatic brain injury? Am J Phys Med Rehabil 75: 456–461CrossRefPubMedGoogle Scholar
  11. Chesnut RM, Marshall SB, Piek J, Blunt BA, Klauber MR, Marshall LF (1993) Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir [Suppl] (Wien) 59: 121–125Google Scholar
  12. Wright KD, Knowles CH, Coats TJ, Sutcliffe JC (1996) Efficient timely evacuation of intracranial haematoma — the effect of transport direct to a specialist centre: Injury 27: 719–721CrossRefPubMedGoogle Scholar
  13. American Association for the Surgery of Trauma; Child Neurology Society; International Society for Pediatric Neurosurgery; International Trauma Anesthesia and Critical Care Society; Society of Critical Care Medicine; World Federation of Pediatric Intensive and Critical Care Societies; National Center for Medical Rehabilitation Research; National Institute of Child Health and Human Development; National Institute of Neurological Disorders and Stroke; Synthes USA; International Brain Injury Association (2003) Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. J Trauma 54 [6 Suppl]: S235–S310Google Scholar
  14. Gabriel EJ, Ghajar J, Jagoda A, Pons PT, Scalea T, Walters BC; Brain Trauma Foundation (2002) Guidelines for prehospital management of traumatic brain injury. J Neurotrauma 19: 111–174CrossRefPubMedGoogle Scholar
  15. Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34: 216–222CrossRefPubMedGoogle Scholar
  16. Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A (2003) Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma 54: 312–319CrossRefPubMedGoogle Scholar
  17. Winchell RJ, Hoyt DB (1997) Endotracheal intubation in the field improves survival in patients with severe head injury. Trauma Research and Education Foundation of San Diego. Arch Surg 132: 592–597PubMedGoogle Scholar
  18. Davis DP, Hoyt DB, Ochs M, Fortlage D, Holbrook T, Marshall LK, Rosen P (2003) The effect of paramedic rapid sequence intubation on outcome in patients with severe traumatic brain injury. J Trauma 54: 444–453CrossRefPubMedGoogle Scholar
  19. Davis DP, Peay J, Sise MJ, Vilke GM, Kennedy F, Eastman AB, Velky T, Hoyt DB (2005) The impact of prehospital endotracheal intubation on outcome in moderate to severe traumatic brain injury. J Trauma 58: 933–939CrossRefPubMedGoogle Scholar
  20. Wang HE, Peitzman AB, Cassidy LD, Adelson PD, Yealy DM (2004) Out-of-hospital endotracheal intubation and outcome after traumatic brain injury. Ann Emerg Med 44: 439–450CrossRefPubMedGoogle Scholar
  21. Helm M, Hauke J, Lampl L (2002) A prospective study of the quality of pre-hospital emergency ventilation in patients with severe head injury. Br J Anaesth 88: 345–349CrossRefPubMedGoogle Scholar
  22. Lal D, Weiland S, Newton M, Flaten A, Schurr M (2003) Pre-hospital hyperventilation after brain injury: a prospective analysis of prehospital and early hospital hyperventilation of the brain-injured patient. Prehospital Disaster Med 18: 20–23PubMedGoogle Scholar
  23. Davis DP, Heister R, Poste JC, Hoyt DB, Ochs M, Dunford JV (2005) Ventilation patterns in patients with severe traumatic brain injury following paramedic rapid sequence intubation. Neurocrit Care 2: 165–171CrossRefPubMedGoogle Scholar
  24. Davis DP, Stern J, Sise MJ, Hoyt DB (2005) A follow-up analysis of factors associated with head-injury mortality after paramedic rapid sequence intubation. J Trauma 59: 486–490CrossRefPubMedGoogle Scholar
  25. Stocchetti N, Maas AI, Chieregato A, van der Plas AA (2005) Hyperventilation in head injury: a review. Chest 127: 1812–1827CrossRefPubMedGoogle Scholar
  26. Werner C, Reeker W, Engelhard K, Lu H, Kochs E (1997) Ketamine racemate and S-(+)-ketamine. Cerebrovascular effects and neuroprotection following focal ischemia. Anaesthesist 46 [Suppl 1]: S55–S60CrossRefPubMedGoogle Scholar
  27. Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, Mattox KL (1994) Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331: 1105–1109CrossRefPubMedGoogle Scholar
  28. Soreide E, Deakin Ch (2005) Pre-hospital fluid therapy in the critically injured patient — a clinical update. Injury 36: 1001–1010CrossRefPubMedGoogle Scholar
  29. Cooper DJ, Myles PS, McDermott FT, Murray LJ, Laidlaw J, Cooper G, Tremayne AB, Bernard SS, Ponsford J; HTS Study Investigators (2004) Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA 291: 1350–1357CrossRefPubMedGoogle Scholar
  30. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R; SAFE Study Investigators (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350: 2247–2256CrossRefPubMedGoogle Scholar
  31. Neff TA, Doelberg M, Jungheinrich C, Sauerland A, Spahn DR, Stocker R (2003) Repetitive large-dose infusion of the novel hydroxyethyl starch 130/0.4 in patients with severe head injury. Anesth Analg 96: 1453–1459CrossRefPubMedGoogle Scholar
  32. Harutjunyan L, Holz C, Rieger A, Menzel M, Grond S, Soukup J (2005) Efficiency of 7.2% hypertonic saline hydroxyethyl starch 200/0.5 versus mannitol 15% in the treatment of increased intracranial pressure in neurosurgical patients — a randomized clinical trial [ISRCTN62699180]. Crit Care 9: R530–R540CrossRefPubMedGoogle Scholar
  33. Mauritz W, Schimetta W, Oberreither S, Polz W (2002) Are hypertonic hyperoncotic solutions safe for prehospital small-volume resuscitation? Results of a prospective observational study. Eur J Emerg Med 9: 315–319CrossRefPubMedGoogle Scholar
  34. Wade CE, Grady JJ, Kramer GC, Younes RN, Gehlsen K, Holcroft JW (1997) Individual patient cohort analysis of the efficacy of hypertonic saline/dextran in patients with traumatic brain injury and hypotension. J Trauma 42 [5 Suppl]: S61–S65CrossRefPubMedGoogle Scholar
  35. Davis DP, Peay J, Serrano JA, Buono C, Vilke GM, Sise MJ, Kennedy F, Eastman AB, Velky T, Hoyt DB (2005) The impact of aeromedical response to patients with moderate to severe traumatic brain injury. Ann Emerg Med 46: 115–122CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lucia Lenartova
    • 1
  • Ivan Janciak
    • 1
  • Ingrid Wilbacher
    • 1
  • Martin Rusnak
    • 1
  • Walter Mauritz
    • 2
  1. 1.INRO (International Neurotrauma Research Organisation)ViennaAustria
  2. 2.Department of Anesthesia and Critical Care MedicineTrauma Hospital "Lorenz Boehler"; INRO Medical Advisory BoardViennaAustria

Personalised recommendations