Wiener klinische Wochenschrift

, Volume 118, Issue 21–22, pp 659–668 | Cite as

Antimicrobial susceptibility of Borrelia burgdorferi sensu lato: What we know, what we don't know, and what we need to know

  • Klaus-Peter HunfeldEmail author
  • Volker Brade
Review Article


Human Lyme borreliosis is a multisystem disorder that can progress in stages and is transmitted by ticks of the Ixodes ricinus complex infected with the spirochete Borrelia burgdorferi sensu lato. Today, Lyme borreliosis is regarded as the most important human tickborne illness in the northern hemisphere. Soon after the causative agent was correctly identified and successfully isolated in 1982, antibiotic treatment was shown to be effective and since then a variety of in vitro and in vivo studies have been performed to further characterize the activity of antimicrobial agents against B. burgdorferi s.l. Although many antimicrobial agents have been tested for their in vitro activity against borreliae, the full spectrum of antibiotic susceptibility in B. burgdorferi s.l. has not been defined for many compounds. Moreover, our current understanding of possible antimicrobial resistance mechanisms in B. burgdorferi s.l. is limited and is largely founded on in vitro experiments on relatively few borrelial isolates. This review will summarize what is and what is not known about antimicrobial resistance in B. burgdorferi s.l. and will discuss open questions that continue to fuel the current debate on treatment-resistant Lyme borreliosis.


Borrelia burgdorferi In vitro susceptibility Antimicrobial agents Antimicrobial resistance Spirochetes Susceptibility testing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Steere AC (2001) Lyme disease. N Engl J Med 345: 115–112CrossRefPubMedGoogle Scholar
  2. CDC (2002) Lyme disease – United States 2000. Morb Mortal Wkly Rep 51: 29–31Google Scholar
  3. O'Connell S, Granström M, Gray JS, Stanek G (1998) Epidemiology of European Lyme borreliosis. Zentralbl Bakteriol 287: 229–240PubMedGoogle Scholar
  4. Stanek G, O'Connell S, Cimmino M, Aberer E, Kristoweritsch W, Granström M, Guy E, Gray J (1996) European Union concerted action on risk assessment in Lyme borreliosis: clinical case definitions for Lyme borreliosis. Wien Klin Wochenschr 108: 741–747PubMedGoogle Scholar
  5. Hunfeld KP, Ruzic-Sabljic E, Norris DE, Kraiczy P, Strle F (2005) In vitro susceptibility testing of B. burgdorferi s.l. isolates cultured from patients with erythema migrans before and after antimicrobial chemotherapy. Antimicrob Agents Chemother 49: 1294–1301CrossRefPubMedGoogle Scholar
  6. Svartz N (1941) Penicillin behandling vid dermatitis atrophicans Herxheimer. Nord Med 32: 2783Google Scholar
  7. Thyresson N (1949) The penicillin treatment of acrodermatitis chronica atrophicans (Herxheimer). Acta Derm Venerol (Stockholm) 29: 572–621Google Scholar
  8. Steere AC (1983) The spirochetal etiology of Lyme disease. N Engl J Med 308: 733–740PubMedCrossRefGoogle Scholar
  9. Oschmann P, Kaiser R (1999) Therapy and prognosis. In: Oschmann P, Kraiczy P, Halperin J, Brade V (eds) Lyme borreliosis and tick-borne encephalitis. UNI-Med Verlag AG, International Medical Publishers, Bremen, Germany, pp 112–119Google Scholar
  10. Wormser GP, Nadelman RB, Dattwyler RJ, Dennis DT, Shapiro ED, Steere AC, Rush TJ, Rahn DW, Coyle PK, Persing DH, Fish D, Luft BJ (2000) Practice guidelines for the treatment of Lyme disease. The Infectious Diseases Society of America. Clin Infect Dis 31 [Suppl 1]: 1–14CrossRefPubMedGoogle Scholar
  11. Hunfeld KP, Kraiczy P, Kekoukh E, Schäfer V, Brade V (2002) Standardised in vitro susceptibility testing of Borrelia burgdorferi against well-known and newly developed antimicrobial agents – possible implications for new therapeutic approaches to Lyme disease. Int J Med Microbiol 291 [Suppl 33]: 125–137PubMedCrossRefGoogle Scholar
  12. Preac-Mursic V, Weber K, Pfister HW, Wilske B, Gross B, Baumann A, Prokop J (1989) Survival of Borrelia burgdorferi in antibiotically treated patients with Lyme borreliosis. Infection 17: 355–359CrossRefPubMedGoogle Scholar
  13. Hassler D, Zöller L, Haude M, Hufnagel HD, Heinrich F, Sonntag HG (1990) Cefotaxime versus penicillin in the late stage of Lyme disease – a prospective, randomized therapeutic study. Infection 18: 16–20CrossRefPubMedGoogle Scholar
  14. Pfister HW, Preac-Mursic V, Wilske B, Schielke E, Sorgel F, Einhaupl KM (1991) Randomized comparison of ceftriaxone and cefotaxime in Lyme neuroborreliosis. J Infect Dis 163: 311–318PubMedGoogle Scholar
  15. Strle F, Preac-Mursic V, Cimperman J, Ruzic E, Maraspin V, Jereb M (1993) Azithromycin versus doxycycline for treatment of erythema migrans: clinical and microbiological findings. Infection 21: 83–88CrossRefPubMedGoogle Scholar
  16. Nowakowski J, McKenna D, Nadelman RB, Cooper D, Bittker S, Holmgren D, Pavia C, Johnson RC, Wormser GP (2000) Failure of treatment with cephalexin for Lyme disease. Arch Fam Med 9: 563–567CrossRefPubMedGoogle Scholar
  17. Dever LL, Jorgensen JH, Barbour AG (1992) In vitro antimicrobial susceptibility testing of Borrelia burgdorferi: a microdilution MIC method and time-kill studies. J Clin Microbiol 30: 2692–2697PubMedGoogle Scholar
  18. Boerner J, Failing K, Wittenbrink MM (1995) In vitro antimicrobial susceptibility testing of Borrelia burgdorferi: influence of test conditions on minimal inhibitory concentration (MIC) values. Zentralbl Bakteriol 283: 49–60PubMedGoogle Scholar
  19. Johnson RC, Kodner CB, Jurkovich PJ, Collins JJ (1991) Comparative in vitro and in vivo susceptibility of the Lyme disease spirochete Borrelia burgdorferi to cefuroxime and other antimicrobial agents. Antimicrob Agents Chemother 34: 2133–2136Google Scholar
  20. Johnson RC, Schmid FW, Hyde FW, Steigerwalt AG, Brenner DJ (1984) Borrelia burgdorferi sp. nov.: etiological agent of Lyme disease. Int J Syst Bacteriol 34: 596–597CrossRefGoogle Scholar
  21. Berger BW, Kaplan MH, Rothenberg IR, Barbour AG (1985) Isolation and characterisation of the Lyme disease spirochete from the skin of patients with erythema chronicum migrans. J Am Acad Dermatol 13: 444–449PubMedCrossRefGoogle Scholar
  22. Luft BJ, Volkman DJ, Halperin JJ, Dattwyler RJ (1988) New chemotherapeutic approaches in the treatment of Lyme borreliosis. Ann N Y Acad Sci 539: 352–361PubMedGoogle Scholar
  23. Levin JM, Nelson JA, Segreti J, Harrison B, Benson CA, Strle F (1993) In vitro susceptibility of Borrelia burgdorferi to 11 antimicrobial agents. Antimicrob Agents Chemother 37: 1444–1446PubMedGoogle Scholar
  24. Preac-Mursic V, Wilske B, Schierz G (1986) European Borrelia burgdorferi isolated from humans and ticks: culture conditions and antibiotic susceptibility. Zentralbl Bakteriol Hyg 263: 112–118Google Scholar
  25. Boerner J (1994) Empfindlichkeitsprüfung von Borrelia burgdorferi gegen Antibiotika und Chemotherapeutika. Inauguraldissertation, Justus-Liebig Universität, GießenGoogle Scholar
  26. Reisinger EC, Wendelin I, Gasser R (1995) Inactivation of diaminopyrimidines and sulfonamides in Barbour-Stoenner-Kelly medium for isolation of Borrelia burgdorferi. Eur J Clin Microbiol Infect Dis 14: 732–733CrossRefPubMedGoogle Scholar
  27. Sohaskey CD, Barbour AG (1999) Esterases in serumcontaining growth media counteract chloramphenicol acetyltransferase activity in vitro. Antimicrob Agents Chemother 43: 655–660PubMedGoogle Scholar
  28. Karlsson M, Hammers S, Nilsson-Ehle I, Malmborg AS, Wretlind B (1992) Concentrations of doxycycline and penicillin G in sera and cerebrospinal fluid of patients treated for neuroborreliosis. Antimicrob Agents Chemother 40: 1104–1107Google Scholar
  29. Hunfeld KP, Kraiczy P, Wichelhaus TA, Schäfer V, Brade V (2000) New colorimetric microdilution method for in vitro susceptibility testing of Borrelia burgdorferi against antimicrobial substances. Eur J Clin Microbiol Infect Dis 19: 27–32CrossRefPubMedGoogle Scholar
  30. Preac-Mursic V, Wilske B, Schierz G, Holmburger M, Suss E (1987) In vitro susceptibility of Borrelia burgdorferi. Eur J Clin Microbiol Infect Dis 6: 424–426CrossRefGoogle Scholar
  31. Alder J, Mitten M, Jarvis K, Gupta P, Clement J (1993) Efficacy of clarithromycin for treatment of experimental Lyme disease in vivo. Antimicrob Agents Chemother 37: 1329–1333PubMedGoogle Scholar
  32. Reisinger EC, Wendelin I, Gasser R, Halwachs G, Wilders-Truschnig M, Krejs G (1996) Antibiotics and increased temperature against Borrelia burgdorferi in vitro. Scand J Infect Dis 28: 155–157PubMedGoogle Scholar
  33. Baradaran-Dilmaghani R, Stanek G (1996) In vitro susceptibility of thirty Borrelia strains from various sources against eight antimicrobial chemotherapeutics. Infection 24: 60–63CrossRefPubMedGoogle Scholar
  34. Hunfeld KP, Kraiczy P, Wichelhaus TA, Schäfer V, Brade V (2000) Colorimetric in vitro susceptibility testing of penicillins, cephalosporines, macrolides, streptogramins, tetracyclines and aminoglycosides against Borrelia burgdorferi isolates. Int J Antimicrob Agents 15: 11–17CrossRefPubMedGoogle Scholar
  35. Hunfeld KP, Weigand J, Wichelhaus TA, Kekoukh E, Kraiczy P, Brade V (2001) In vitro activity of mezlocillin, meropenem, aztreonam, vancomycin, teicoplanin, ribostamycin, and fusidic acid against Borrelia burgdorferi isolates. Intern J Antimicrob Agent 17: 203–208CrossRefGoogle Scholar
  36. Hunfeld KP (2004) Contributions to seroepidemiology, diagnosis, and antimicrobial susceptibility of Borrelia, Ehrlichia, and Babesia as indigenous tick-conducted pathogens. Shaker Verlag GmbH, Aachen, pp 91–118Google Scholar
  37. Dever LL, Jorgensen JH, Barbour AG (1993) In vitro activity of vancomycin against the spirochete Borrelia burgdorferi. Antimicrob Agents Chemother 37: 1115–1121PubMedGoogle Scholar
  38. Dever LL, Torigian CV, Barbour AG (1999) In vitro activities of the everninomicin SCH 27899 and other newer antimicrobial agents against Borrelia burgdorferi. Antimicrob Agents Chemother 43: 1773–1775PubMedGoogle Scholar
  39. Hunfeld KP, Rödel R, Wichelhaus TA (2003) In vitro activity of eight oral cephalosporins against B. burgdorferi. Intern J Antimicrob Agents 21: 313–318CrossRefGoogle Scholar
  40. Kaiczy P, Weigand J, Wichelhaus TA, Heisig P, Backes H, Schäfer V, Acker G, Brade V, Hunfeld KP (2001) In vitro activity of fluoroquinolones against the spirochete Borrelia burgdorferi. Antimicrob Agents Chemother 45: 2486–2494CrossRefGoogle Scholar
  41. Knight SW, Samuels DS (1999) Natural synthesis of a DNA-binding protein from the C-terminal domain of DNA gyrase A in Borrelia burgdorferi. EMBO J 18: 4875–4881CrossRefPubMedGoogle Scholar
  42. Johnson RC (1989) Isolation techniques for spirochetes and their sensitivity to antibiotics in vivo and in vitro. Rev Infect Dis 11 [Suppl 6]: S1505–S1510PubMedGoogle Scholar
  43. Lakos A, Nagy G (1999) Effect of an antibiotic combination on the propagation of Borrelia burgdorferi, causative agent of Lyme disease. Orv Hetil 140: 1529–1532PubMedGoogle Scholar
  44. Murgia R, Marchetti F, Cinco M (1999) Comparative bacteriostatic and bactericidal activities of cefozidime against Borrelia burgdorferi s.l. Antimicrob Agents Chemother 43: 3030–3032PubMedGoogle Scholar
  45. Samuels DS, Garon CF (1993) Coumermycin A1 inhibits growth and induces relaxation of supercoiled plasmids in B. burgdorferi, the Lyme disease agent. Antimicrob Agents Chemother 37: 46–50PubMedGoogle Scholar
  46. Galbraith KM, Ng AC, Eggers BJ, Kuchel CR, Eggers CH, Samuels DS (2005) parC mutations in fluoroquinoloneresistant Borrelia burgdorferi. Antimicrob Agents Chemother 49: 4354–4357CrossRefPubMedGoogle Scholar
  47. Morrissey I, George JT (2000) Purification of pneumococcal type II topoisomerase and inhibition by gemifloxacin and other quinolones. J Antimicrob Chemother 45 [Suppl S1]: 101–106CrossRefPubMedGoogle Scholar
  48. Lewin CS, Morrissey I, Smith JT (1992) The bactericidal activity of sparfloxacin. J Antimicrob Chemother 30: 625–632PubMedGoogle Scholar
  49. Capobianco JO, Cao Z, Shortrige VD, Ma Z, Flamm RK, Zhong P (2000) Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Str. pneumoniae. Antimicrob Agents Chemother 44: 1562–1567CrossRefPubMedGoogle Scholar
  50. Balfour JA, Figgitt DP (2001) Telithromycin. Drugs 61: 815–829CrossRefPubMedGoogle Scholar
  51. Dougherty TJ, Barrett JF (2001) ABT-773: a new ketolide antibiotic. Expert Opin Investig Drugs 10: 343–351CrossRefPubMedGoogle Scholar
  52. Hunfeld KP, Kekoukh E, Wichelhaus TA, Kraiczy P, Brade V (2001) In vitro susceptibility of the Borrelia burgdorferi s.l. complex to ABT 773 – a novel ketolide. J Antimicrob Chemotherapy 48: 447–449CrossRefGoogle Scholar
  53. Hunfeld KP, Wichelhaus TA, Rödel R, Acker G, Brade V, Kraiczy P (2004) Comparison of in vitro activities of ketolides, macrolides, and an azalide against the spirochete Borrelia burgdorferi. Antimicrob Agents Chemother 48: 344–347CrossRefPubMedGoogle Scholar
  54. Preac-Mursic V, Marget W, Busch U, Pleterski-Riegler D, Hagel S (1996) Kill kinetics of Borrelia burgdorferi and bacterial findings in relation to the treatment of Lyme borreliosis. Infection 24: 9–16CrossRefPubMedGoogle Scholar
  55. Yassin HM, Dever LL (2001) Telithromycin: a new ketolide antimicrobial for treatment of respiratory tract infections. Expert Opin Investig Drugs 10: 353–367CrossRefPubMedGoogle Scholar
  56. Terekhova D, Sartakova ML, Wormser GP, Schwartz I, Cabello FC (2002) Erythromycin resistance in B. burgdorferi. Antimicrob Agents Chemother 46: 3637–3640CrossRefPubMedGoogle Scholar
  57. Hansen K, Hovmark A, Lebech AM, Lebech K, Olsson I, Halkier-Sorensen LL, Olsson E, Asbrink E (1992) Roxithromycin in Lyme borreliosis: discrepant results of an in vitro and in vivo animal susceptibility study and a clinical trial in patients with erythema migrans. Acta Dermatologica Venerologica 72: 297–300Google Scholar
  58. Fitzpatrik FB (1987) Sexually transmitted diseases. In: Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI, Fitzpatrick TB (eds) Fitzpatrick's dermatology in general medicine, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  59. Fujita K, Baba T, Isono K (1998) Genomic analysis of the genes encoding ribosomal proteins in eight eubacterial species and Saccharomyces cerevisiae. Genome Inform Ser Workshop Genome Inform 9: 3–12PubMedGoogle Scholar
  60. Van Dam AP, Kuiper H, Vos K, Widjojokusumo A, Spanjaard L, De Jongh BM, Ramselaar ACP, Kramer MD, Dankert J (1997) Different genospecies of B. burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 17: 708Google Scholar
  61. Peter O, Bretz AG (1994) In vitro susceptibility of B. burgdorferi, B. garinii and B. afzelii to 7 antimicrobial agents. In: Cevenini R, Sambri V, La Placa M (eds) Advances in Lyme borreliosis research. Societa Editrice Esculapio, Bologna, pp 167–170Google Scholar
  62. Sicklinger M, Wienecke R, Neubert U (2003) In vitro susceptibility testing of four antibiotics against Borrelia burgdorferi: A comparison of results for the three genospecies Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi sensu stricto. J Clin Microbiol 41: 1791–1793CrossRefPubMedGoogle Scholar
  63. Wilske B, Zoeller L, Brade V, Eiffert H, Goebel UB, Stanek G, Pfister HW (2000) Lyme-Borreliose. In: Mauch H, Gaterman S (eds) Qualitätsstandards in der Mikrobiologisch-infektiologischen Diagnostik. Urban & Fischer, MünchenGoogle Scholar
  64. Ruzic-Sabljic E, Podreka T, Maraspin V, Strle F (2005) Susceptibility of Borrelia afzelii strains to antimicrobial agents. Int J Antimicrob Agents 25: 474–778CrossRefPubMedGoogle Scholar
  65. Smith RP, Schoen RT, Rahn DW, Sikand VK, Nowakowski J, Parenti DL, Holman MS, Persing DH, Steere AC (2002) Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann Intern Med 136: 421–428PubMedGoogle Scholar
  66. Thanassi WT, Schoen RT (2000) The Lyme disease vaccine: conception, development, and implementation. Ann Intern Med 132: 661–668PubMedGoogle Scholar
  67. Panconesi E, Zuccati G, Cantin A (1981) Treatment of syphilis: a short critical review. Sex Transm Dis 8: 321–325PubMedGoogle Scholar
  68. Viljanen MK, Oksi J, Salomaa P, Skurnik M, Peltonen R, Kalimo H (1992) Cultivation of Borrelia burgdorferi from the blood and a subcutaneous lesion of a patient with relapsing febrile nodular nonsuppurative panniculitis. J Infect Dis 165: 596–597PubMedGoogle Scholar
  69. Wormser GP, Ramanathan R, Nowakowski J, McKenna D, Holmgren D, Visintainer P, Dornbush R, Singh B, Nadelman RB (2003) Duration of antibiotic therapy for early Lyme disease. Ann Intern Med 138: 697–704PubMedGoogle Scholar
  70. Strle F, Maraspin V, Lotric-Furlan S, Ruzic-Sabljic E, Cimperman J (1996) Azithromycin and doxycycline for treatment of Borrelia culture-positive erythema migrans. Infection 24: 64–68CrossRefPubMedGoogle Scholar
  71. Straubinger RK, Summers BA, Chang YF, Appel MJG (1997) Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J Clin Microbiol 35: 111–116PubMedGoogle Scholar
  72. Oksi J, Marjamaki M, Nikoskelainen J, Viljanen MK (1999) Borrelia burgdorferi detected by culture and PCR in clinical relapse of disseminated Lyme borreliosis. Ann Med 31: 225–232PubMedGoogle Scholar
  73. Lomholt H, Lebech AM, Hansen K, Brandrup F, Halkier-Sorensen L (2000) Long-term serological follow-up of patients treated for chronic cutaneous borreliosis or culture-positive erythema migrans. Acta Derm Venereol 80: 362–366CrossRefPubMedGoogle Scholar
  74. Criswell D, Tobiason VL, Lodmell JS, Samuels DS (2006) Mutations conferring aminoglycoside and spectinomycin resistance in B. burgdorferi. Antimicrob Agents Chemother 50: 445–452CrossRefPubMedGoogle Scholar
  75. Lukehart SA, Godornes C, Molini BJ, Sonnett P, Hopkins S, Mulcahy F, Engelman J, Mitchell SJ, Rompalo AM, Marra CM, Klausner JD (2004) Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med 351: 154–158CrossRefPubMedGoogle Scholar
  76. Breier F, Khanakah G, Stanek G, Kunz G, Aberer E, Schmidt B, Tappeiner G (2001) Isolation and polymerase chain reaction typing of Borrelia afzelii from a skin lesion in a seronegative patient with generalized ulcerating bullous lichen sclerosus et atrophicus. Br J Dermatol 144: 387–392CrossRefPubMedGoogle Scholar
  77. Aberer E, Kersten A, Klade H, Poitschek C, Jurecka W (1996) Heterogeneity of Borrelia burgdorferi in the skin. Am J Dermatopathol 18: 571–579CrossRefPubMedGoogle Scholar
  78. Pachner AR, Basta J, Delaney E, Hulinska D (1995) Localization of Borrelia burgdorferi in murine Lyme borreliosis by electron microscopy. Am J Trop Med Hyg 52: 128–133PubMedGoogle Scholar
  79. Brorson O, Brorson SH (1997) Transformation of cystic forms of Borrelia burgdorferi to normal, mobile spirochetes. Infection 25: 240–246CrossRefPubMedGoogle Scholar
  80. Brouqui P, Badiaga S, Raoult D (1996) Eucaryotic cells protect Borrelia burgdorferi from the action of penicillin and ceftriaxone but not from the action of doxycycline and erythromycin. Antimicrob Agents Chemother 40: 1552–1554PubMedGoogle Scholar
  81. Comstock LE, Thomas DD (1989) Penetration of endothelial cell monolayers by Borrelia burgdorferi. Infect Immun 57: 1626–1628PubMedGoogle Scholar
  82. Ma Y, Sturrock A, Weis JJ (1991) Intracellular localisation of B. burgdorferi within endothelial cells. Infect Immun 59: 671–678PubMedGoogle Scholar
  83. Strle F, Nelson JA, Ruzic-Sabljic E, Cimperman J, Maraspin V, Lotric-Furlan S, Cheng Y, Picken MM, Trenholme GM, Picken RN (1996) European Lyme borreliosis: 231 culture-confirmed cases involving patients with erythema migrans. Clin Infect Dis 23: 61–65PubMedGoogle Scholar
  84. Schwartz I, Wormser GP, Schwartz JJ, Cooper D, Weissensee P, Gazumyan A, Zimmermann E, Goldberg NS, Bittker S, Campbell GL, Pavia CS (1992) Diagnosis of early Lyme disease by polymerase chain reaction amplification and culture of skin biopsies from erythema migrans lesions. J Clin Microbiol 30: 3082–3088PubMedGoogle Scholar
  85. Zore A, Ruzic-Sabljic E, Maraspin V, Cimperman J, Lotric-Furlan S, Pikelj A, Jurca T, Logar M, Strle F (2002) Sensitivity of culture and polymerase chain reaction for the etiologic diagnosis of erythema migrans. Wien Klin Wochenschr 114: 606–609PubMedGoogle Scholar
  86. Logar M, Lotric-Furlan S, Maraspin V, Cimperman J, Jurca T, Ruzic-Sabljic E, Strle F (1999) Has the presence or absence of Borrelia burgdorferi sensu lato as detected by skin culture any influence on the course of erythema migrans? Wien Klin Wochenschr 111: 945–950PubMedGoogle Scholar
  87. Hunfeld KP, Ruzic-Sabljic E, Norris DE, Kraiczy P, Strle F (2006) Risk of culture confirmed borrelial persistence in patients treated for erythema migrans and possible mechanisms of resistance. Int J Med Microbiol 296 [Suppl 40]: 233–241CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Medical Microbiology & Infection ControlUniversity Hospital of FrankfurtFrankfurt/MainGermany

Personalised recommendations