Advertisement

Wiener klinische Wochenschrift

, Volume 118, Supplement 3, pp 2–8 | Cite as

Vaccines against traveler's diarrhoea and rotavirus disease – a review

  • Ursula WiedermannEmail author
  • Herwig Kollaritsch
Review Article

Summary

Diarrheal diseases constitute one of the most important health problems worldwide, preferrentially in developing countries with a morbidity of estimated 5 billion and a mortality of 5 million cases per year. Children less than 5 years are particularly in danger with respect to the incidence and severity of the gastrointestinal sympotoms. Travelers to developing countries are also at risk to develop diarrheal disorders; around 30–50% of them acquire so called "travelers's diarrhea" caused by bacteria, viruses or protozoa. It has been estimated that approximately 30–70% of diarrhea are due to bacteria, of which the most frequently detected enteric pathogens are non-invasive, enterotoxigenic Escherichia coli (ETEC). Their exotoxins, the heat stabile (ST) and the heat labile (LT) toxins are in large part responsible for the pathogenicity of the bacteria. About 20% of cases of traveler's diarrhea are caused by LT producing ETEC. This heat labile toxin exhibits a 80% sequence homology with cholera toxin. The presently available vaccine against cholera (Dukoral®) contains inactivated Vibrio cholerae bacteria and the recombinant non-toxic B subunit of cholera toxin. Consequently, this vaccine displays also some efficacy against traverler's diarrhoea with up to 25% of travelers being protected against this disease. Rotaviruses are the leading recognized cause of diarrhoea-related illness and deaths among infants worldwide in developing and industrialized countries. Based on the high incidence of this disease two oral vaccines have been developed and will be available in Europe in 2006. Due to the impact of rotavirus diseases also in Austria vaccination against this disease has been already suggested in the Austrian vaccination schedules for infants from 6–24 weeks of age. One of the two vaccines, Rotarix®, is an attenuated monovalent vaccine with a broad cross-reactivity against the most frequent serotypes. The second one, RotaTeq®, is a pentavalent attenuated vaccine containing 5 human-bovine reassortants. Both vaccines display 85–98% efficacy against severe rotavirus disease and an excellent tolerability with no difference in side reactions to the placebo controls, particularly with respect to intussusceptions. With respect to increasing travel habits with infants and small children, particularly when visiting friends and relatives, vaccination against rotavirus infections will also be important in international travel.

Keywords

Diarrheal disease ETEC Rotavirus Vaccination 

Impfungen gegen Reisedurchfallerreger und Rotaviren

Zusammenfassung

Durchfallserkrankungen stellen ein weltweit großes Gesundheitsproblem dar. In Entwicklungsländern erkranken geschätzte 5 Milliarden Menschen und die Mortalität beträgt ca. 4 Millionen/Jahr. Besonders betroffen, sowohl in der Häufigkeit wie auch in der Schwere der Erkrankung, sind Kinder bis zu 5 Jahren. Bei Reisenden in diese Gebiete spielen Durchfallserkrankungen eine große Rolle; etwa 20–50% der Reisenden entwickeln Reisediarrhoe, vorwiegend hervorgerufen durch Bakterien, Viren oder Protozoen. Bei den bakteriellen Durchfallserkrankungen werden in Abhängigkeit des betreffenden Landes (Mexiko, Lateinamerika, Afrika, Philippinen) 30–70% der Fälle durch enterotoxigene E.coli (ETEC) hervorgerufen. Die Pathogenität dieser nicht invasiven Bakterien wird primär durch Hitze-stabile (ST) und Hitze-labile (LT) Toxine bedingt, wobei etwa 20% aller Reisedurchfallserkrankungen durch LT-sezernierende ETEC hervorgerufen werden. Dieses hitzelabile Toxin hat eine strukturelle Identität und 80% Sequenzhomologie mit Choleratoxin. Der derzeit am Markt befindliche orale Choleraimpfstoff (Dukoral®) enthält nebst abgetöteter Choleravibrionen auch die nicht toxische, aber immunogene B-subunit des Cholera Toxins in rekombinanter Form. Daher ist dieser orale Impfstoff auch für ETEC-Reisediarrhoe von Nutzen. Effizienzberechnungen der Impfung ergaben, dass bis zu 25% der Reisenden dadurch gegen Diarrhoe geschützt werden können. Rotaviren (RV) gehören besonders bei Kindern zu den wichtigsten Durchfallserregern in Industrie- und Entwicklungsländern. Aufgrund der weltweit hohen Inzidenz dieser Durchfallserkrankung wurden 2 orale Lebendimpfstoffe gegen Rotaviren entwickelt, die seit 2006 in Europa registriert sind. Aufgrund der Bedeutung dieser Erkrankung auch in Österreich wurde im österreichischen Impfplan eine allgemeine Impfempfehlung von Säuglingen zwischen 6 und 24 Wochen ausgegeben. Es handelt sich bei den oralen Impfstoffen einerseits um einen attenuierten, humanen, monovalenten RV-Lebendimpfstoff, der eine breite Kreuzimmunität gegen die gängigsten Serotypen aufweist (Rotarix®), und andererseits um einen attenuierten pentavalenten Lebendimpfstoff, der 5 human-bovine Reassortanten enthält (RotaTeq®). Verträglichkeit und Wirksamkeit der beiden Impfstoffe sind in etwa vergleichbar: die Wirksamkeit gegen schwere RV-Gastroenteritiden liegt zwischen 85–98%, bezüglich Verträglichkeit bestand kein Unterscheid zur Placebokontrolle und keine Assoziationen mit Invaginationen konnten festgestellt werden. Aufgrund der zunehmenden Reisetätigkeit mit kleinen Kindern wird der Rotavirusimpfung auch im internationalen Reiseverkehr eine wichtige Bedeutung zukommen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steffen R, Castelli F, Nothdurft HD, Rombo L, Zuckerman JN (2005) Vaccination against enterotoxigenic Escherichia coli, a cause of Traveler's diarrhoea. J Travel Med 12: 102–107PubMedCrossRefGoogle Scholar
  2. Yates J (2005) Traveler's diarrhoea. American Family Physician 71: 2075–2100; 2107–2108Google Scholar
  3. Parashar UD, Hummelman EG, Bresee JC, Miller MA, Glass RI (2003) Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 9: 565–572PubMedGoogle Scholar
  4. Quadri F, Ahmed T, Ahmed F, Bhuiyan NA, Rahman AS, Clemens JD, Black RE, Albert MJ (2003) Safety and immunogenicity of an oral inactivated enerotoxigenic Escherichia coli plus cholera toxin B subunit vaccine in Bangladeshi children 18–36 months of age. Vaccine 21: 2394–2403CrossRefGoogle Scholar
  5. Hall ER, Wierzba TF, Ahren C, Rao MR, Bassily S, Francis W, Girgis FY, Safwat M, Lee YJ, Svennerholm AM, Clemens JD, Savarino SJ (2001) Induction of systemic antifimbria and antitoxin antibody responses in Egyptian children and adults by an oral killed enterogenic Escherichia coli plus cholera toxin B subunit vaccine. Infect Immun 9: 2853–2857CrossRefGoogle Scholar
  6. Wiedermann G, Kollaritsch H, Kundi M, Svennerholm AM, Bjare U (2000) Double-blind, randomized, placebo controlled pilot study evaluating effciacy and reactogenicity of an oral ETEC B-subunit inactivated whole cell vaccine against traveler's diarrhoea (preliminary report). J Travel Med 7: 27–29PubMedCrossRefGoogle Scholar
  7. Jertborn M, Ahre C, Holmgren J, Svennerholm AM (1998) Safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli plus cholera toxin B subunit vaccine. Vaccine 16: 225–260CrossRefGoogle Scholar
  8. Boedecker EC (2005) Vaccines for enterotoxigenic Escherichia coli: current status. Curr Opin Gastroenterol 21: 15–19Google Scholar
  9. Katz D, De Lorimier A, Wolf M, Hall ER, Cassels FJ, van Hamont JE, Newcomer RL, Davachi MA, Taylor DN, McQueen CE (2003) Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6. Vaccine 21: 341–346PubMedCrossRefGoogle Scholar
  10. Lasaro MO, Luiz WB, Sbrogio-Altmeida ME, Ferreiria LCS (2005) Prime-boost vaccine regime confers protective immunity to human derived enterotoxigenic Escherichia coli. Vaccine 23: 2430–2438PubMedCrossRefGoogle Scholar
  11. Clemens JD, Sack DA, Harris JR, Chakraborty J, Neogy PK, Stanton B, Huda N, Khan MU, Kay BA, Khan MR (1988) Cross-protection by B-subunit-whole cell cholera vaccine against diarrhoea associated with heat-labile toxin producing enterotoxigenic Escherichia coli: result from a large scale field trial. J Infect Dis 158: 372–377PubMedGoogle Scholar
  12. Peltola H, Siitonen A, Kyrönseppä H, et al (1991) Prevention of travellers' diarrhoea by oral B-subunit/whole cell cholera vaccine. Lancet 338: 1285–1289PubMedCrossRefGoogle Scholar
  13. Scerpella EG, Sanchez JL, Mathewson III JJ, et al (1995) Safety, immunogenicity and protective efficacy of the whole-cell/recombinant B-subunit (WC/rBS) oral cholera vaccine against travelers' diarrhoea. J Travel Med 2: 22–27PubMedCrossRefGoogle Scholar
  14. Jiang ZD, Okhuysen PC, Guo DC, et al (2003) Genetic susceptibility to enteroaggregative Escherichia coli diarrhoea: polymorphism in the interleukin-8 promoter region. J Infect Dis 188: 506–511PubMedCrossRefGoogle Scholar
  15. Holmgren J, Bergquist Ch (2004) Oral B subunit-killed whole cell cholera vaccine. In: Levine MM, Kaper JB, Rappuoli R, Liu MA, Good MF (eds) New generation vaccine, 3rd edn. Marcel Dekker, 499–509Google Scholar
  16. Roberts L (2004) Rotavirus vaccines' second chance. Science 305: 1890–1893PubMedCrossRefGoogle Scholar
  17. Glass RI, Bresee JS, Parashar U, Turcios R, Fischer TK, Jiang B, Widdowson MA, Gentsch J (2005) Rotavirus vaccines: past, present and future. Arch de pediatrie 12: 844–847CrossRefGoogle Scholar
  18. Grimwood K, Abbot GD, Fegusson DM, Fergusson DM, Jennings LC, Allan JM (1983) Spread of rotaviurs within families: a community based study. BMJ 287: 575–577PubMedCrossRefGoogle Scholar
  19. Dennehy RH (2004) Transmission of rotavirus and other enteric pathogens in the home. Pediatr Infect Dis 19: S103–S105Google Scholar
  20. Waters V, Ford-Jones L, Petric M, Jennings LC, Allan JM (2000) Etiology of community acquired pediatric viral diarrhoea: a prospective longitudinal study in hospitals, emergency departments, pediatric practices and child care centers during the winter rotavirus outbreak, 1997–1998. Pediatr Infect Dis J 19: S843–S848Google Scholar
  21. Velazquez FR, Matson DO, Calva JJ (1996) Rotavirus infections in infants as protection against subsequent infections. N Engl J Med 335: 1022–1028PubMedCrossRefGoogle Scholar
  22. Cunliffe NA, Nakagoni O (2005) A critical time for rotavirus vaccines: a review. Expert Rev Vaccines 4: 521–532PubMedCrossRefGoogle Scholar
  23. Santos N, Hoshino Y (2005) Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol 15: 29–56PubMedCrossRefGoogle Scholar
  24. Koshimura Y, Nakaoni T, Nakagoni O (2000) The relative frequency of G serotypes of rotaviruses recovered from hospitalized children with diarrhoea: a 10 years survey (1987–1996) in Japan with a review of global collection data. Microbiol Immunol 44: 499–510PubMedGoogle Scholar
  25. Vesikari T, Mäki M, Isolauri E (1983) Epidemiologic background for the need of rotavirus vaccine in Finland: preliminary experience of RIT 4237 strain of live attenuated rotavirus vaccine in adults. Dev Biol Standard 53: 229–236Google Scholar
  26. Senturia YD, Peckham CS, Cordery M, Chrystie IA, Banatvala JE, Andre FE (1987) Live attenuated oral rotavirus vaccine. Lancet 2: 1342–1345Google Scholar
  27. Vesicari T, Giaquinto C, Huppertz HI (2006) Clinical trials of rotavirus vaccines in Europe. Pediatr. Infect Dis J 25: S542–S547Google Scholar
  28. Joensun J, Koskenniemi E, Pang XL, Vesikari T (1997) Randomized placebo-controlled trial of rhesus-human reassortant rotaviurs vaccine for prevention of severe rotavirus gastroenteritis. Lancet 350: 1205–1209CrossRefGoogle Scholar
  29. Bernstein DI, Glass RI, Rodgers G, Davidson BL, Sack DA (1995) Evaluation of rhesus rotavirus monovalent and tretravalent reassortant vaccines in US children. JAMA 273: 1191–1196PubMedCrossRefGoogle Scholar
  30. Rennels MB, Glass RI, Dennehy PH, Bernstein DI, Pichichero ME, Zito ET, Mack ME, Davidson BL, Kapikian AZ (1996) Safety and efficacy of high dose rhesus-human reassortant rotavirus vaccines: report of the National Multicenter Trial. Pediatrics 97: 7–13PubMedGoogle Scholar
  31. Center for Disease Control and Prevention (1999) Intussusception among reciepients of rotavirus vaccine. United States 1998–1999. MMWR 48: 577–581Google Scholar
  32. Center for Disease Control and Prevention (1999) Withdraw of rotavirus vaccine recommendation. MMWR 48: 1007Google Scholar
  33. Bernstein DI, Smith VI, Sherwood JR, Schiff GM, Sander DS, DeFeudis D, Spriggs DR, Ward RL (1998) Safety and immunogenicity of live, attenuated human rotavirus vaccine 89-12. Vaccine 16: 381–387PubMedCrossRefGoogle Scholar
  34. DeVoss B, Vesikari T, Linhares A, Salinas B, Perez-Schael I, Ruiz-Palacios GM, Guerrero Mde L, Phua KB, Delem A, Hardt K (2004) A rotavirus vaccine for prophylaxis of infants against rotavirus gastroenteritis. Pediatr Infect Dis J 23: S179–S182Google Scholar
  35. Ruiz-Palacios GM, Perez-Schael I, Velazquez FR, et al; Human Rotavirus Vaccine Study Group (2006) Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med 354: 11–22PubMedCrossRefGoogle Scholar
  36. Vesikari T, Karvonen A, Puustinen L, Zeng SQ, Szakal ED, Delem A, De Vos B (2004) Efficacy of RIX4414 live attenuated human rotavirus vaccine in Finnish infants. Pediatr Infect Dis J 23: 937–943PubMedGoogle Scholar
  37. Salinas B, Perez-Schael I, Linhares AC, Ruiz Palacios GM, Guerrero ML, Yarzabal JP, Cervantes Y, Costa Clemens S, Damaso S, Hardt K, De Vos B (2005) Evaluation of safety, immunogenicty and efficacy of an attenuated rotavirus vaccine RIX 4414: a randomized, placebo controlled trial from Latin American infants. Pediatr Infect Dis J 24: 807–816PubMedCrossRefGoogle Scholar
  38. Clark HF, Bernstein DI, Dennehy RH, Offit P, Pichichero M, Treanor J, Ward RL, Krah DL, Shaw A, Dallas MJ, Laura D, Eiden JJ, Ivanoff N, Kaplan KM, Heaton P (2004) Safety, efficacy and immunogenicity of a live, quadrivalent human-bovine rotavirus vaccine in healthy infants. J Pediatr 144: 184–190PubMedCrossRefGoogle Scholar
  39. Vesikari T, Clark HF, Offit RA, et al (2004) The effect and dose of composition of a pentavalent roatvirus vaccine (Rotateq) upon safety, efficacy and immunogenicity in healthy infants. 22nd annual meeting of the European Society for Pediatric Infectious Diseases (ESPID), Tampere, Finland, May 26–28Google Scholar
  40. Vesikari T, Matson DO, Dennehy P, et al; Rotavirus Ef- ficacy and Safety Trial (REST) Study Team (2006) Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N Engl J Med 344: 23–33CrossRefGoogle Scholar
  41. Heaton RM, Goveia MG, Miller JM, Offit P, Clark HF (2005) Development of a pentavalent rotavirus vaccine against prevalent serotypes of rotavirus gastroenteritis. J Infect Dis 192 [Suppl]: S17–S21PubMedCrossRefGoogle Scholar
  42. Glass RI, Parashar UD (2006) The promise of new rotavirus vaccines. N Engl J Med 354: 75–77PubMedCrossRefGoogle Scholar
  43. Vesikari T, Karvonen A, Prymula R, et al (2006) Human rotavirus vaccine Rotarix® (4414) is highly efficacious in Europe. 24th Annual Meeting of the European Society for Pediatric Infectious Diseases (ESPID). Basel, Switzerland, May 3–5Google Scholar
  44. Rendi-Wagner P, Kundi M, Mikolasek A, Mutz I, Zwiauer K, Wiedermann U, Vecsei A, Kollaritsch H (2006) Active hospital based surveillance of rotavirus diarrhea in Austrian children, period 1997 to 2003. Wien Klin Wochenschr 118: 280–285PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Specific Prophylaxis and Tropical Medicine, Center for Physiology and PathophysiologyMedical University of ViennaViennaAustria

Personalised recommendations