Advertisement

Wiener klinische Wochenschrift

, Volume 118, Issue 17–18, pp 531–537 | Cite as

Clinical appearance of erythema migrans caused by Borrelia afzelii and Borrelia garinii – effect of the patient's sex

  • Louise Bennet
  • Carl-Johan Fraenkel
  • Ulf Garpmo
  • Anders Halling
  • Mikael Ingman
  • Katharina Ornstein
  • Louise Stjernberg
  • Johan Berglund
Original Article

Summary

AIM: The aim in this survey was to study the clinical characteristics of infections caused by Borrelia genospecies in patients with erythema migrans where borrelial origin was confirmed by polymerase chain reaction. The aim was also to study factors influencing the clinical appearance of erythema migrans. METHODS: The study was conducted in southern Sweden from May 2001 to December 2003 on patients 18 years and older attending with erythema migrans at outpatient clinics. All erythema migrans were verified by polymerase chain reaction, photographed and categorized as "annular" or "non-annular" lesions. A logistic regression model was used to analyze relations between the appearance of the erythema migrans (i.e. annular or non-annular) and factors that influenced its clinical appearance. RESULTS: A total of 118 patients, 54 women (45.8%) and 64 men (54.2%), fulfilled the inclusion criteria. Of these patients, 74% were infected by B. afzelii and 26% by B. garinii (p < 0.001). A total of 45% (38/85) of the erythema migrans were annular, 46% (39/85) were nonannular and 9.4% (8/85) were atypical. For men infected by B. afzelii, the odds ratio of developing non-annular erythema migrans was 0.09 (95% CI: 0.03–0.33) in comparison with women with the same infection. CONCLUSIONS: In this prospective study of a large series of erythema migrans, where infecting genospecies were confirmed by polymerase chain reaction, the sex of patients infected with B. afzelii had a strong influence on the appearance of the rash. Patients infected by B. garinii more often had non-annular erythema migrans and a more virulent infection with more individuals presenting with fever, raised levels of C-reactive protein and seroreactivity in the convalescence sera.

Keywords

Lyme borreliosis Erythema chronicum migrans Borrelia garinii Borrelia afzelii Polymerase chain reaction 

Erythema migrans nach Infektion durch Borrelia afzelii oder Borrelia garinii: Abhängigkeit des klinischen Erscheinungsbildes vom Geschlecht der Patienten

Zusammenfassung

ZIEL DER STUDIE: Untersuchung der klinischen Charakteristika von durch Borrelia Genospezies bedingten Infektionen bei Patienten mit Erythema migrans, bei denen die Diagnose der Borreliose durch PCR gesichert war. Zusätzlich sollten Faktoren untersucht werden, die das klinische Erscheinungsbild des Erythema migrans beeinflussen könnten. METHODEN: Diese Studie wurde in Südschweden von Mai 2001 bis Dezember 2003 an Patienten, die älter als 18 Jahre waren und die die Ambulanz wegen Erythema migrans aufgesucht hatten, durchgeführt. Alle Erythema migrans wurden durch PCR bestätigt, photographiert und als "annulär" oder "nicht-annulär" kategorisiert. Ein logistisches Regressionsmodell wurde zur Analyse von möglichen Zusammenhängen zwischen der Erscheinungsform des Erythema migrans (annullär oder nicht-annulär) und verschiedenen Faktoren, die die klinische Erscheinungsform beeinflussen könnten, angewandt. ERGEBNISSE: 118 Patienten, 54 Frauen (45,8%) und 64 Männer (54,2%), erfüllten die Einschlusskriterien. 74% der Patienten war mit B. afzelli und 26% mit B. garinii (p < 0,001) infiziert. Insgesamt waren 45% (38/85) der Erythemata annulär, 46% waren nicht-annulär und 9,4% wurden als atypisch eingestuft. Die Odds Ratios für Männer die mit B. afzelii infiziert waren, ein nicht-annuläres Erythema migrans zu entwickeln, lagen im Vergleich zu Frauen mit der gleichen Infektion bei 0,09 (95%; CI: 0,03–0,33). SCHLUSSFOLGERUNGEN: In dieser prospektiven Studie an einer großen Zahl von Patienten mit Erythema migrans, deren Genospezies durch PCR gesichert war, hatte das Geschlecht einen starken Einfluss auf die klinische Erscheinungsform des Erythema migrans bei B. afzelii Infektion. Die Patienten mit einer Infektion durch B. garinii hatten öfter nicht-annuläre Erythemata, die Infektion verlief virulenter mit häufigerem Fieber, häufiger erhöhten CRP Spiegel und positiver Seroreaktivität in der Genesungsphase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steere AC (2001) Lyme disease. N Engl J Med 345: 115–125PubMedCrossRefGoogle Scholar
  2. Berglund J, Eitrem R, Ornstein K, Lindberg A, Rignér Å, Elmrud H, et al (1995) An epidemiological study of Lyme disease in southern Sweden. N Engl J Med 333: 1319–1324PubMedCrossRefGoogle Scholar
  3. Åsbrink E (1991) Cutaneous manifestations of Lyme borreliosis; Clinical definitions and differential diagnosis. Scand J Infect Dis [Suppl] 77: 44–50Google Scholar
  4. Van Dam AP, Kuiper H, Vos K, Kramer MD, Widjojokusomo A, de Jongh BM, et al (1993) Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 17: 708–717PubMedGoogle Scholar
  5. Balmelli T, Piffaretti JC (1995) Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res Microbiol 146: 329–340PubMedCrossRefGoogle Scholar
  6. Anthonissen FM, De Kesel M, Hoet PP, Bigaignon GH (1994) Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res Microbiol 145: 327–331PubMedCrossRefGoogle Scholar
  7. Strle F, Nadelman RB, Cimperman J, Nowakowski J, Picken RN, Schwartz I, et al (1999) Comparison of culture-confirmed erythema migrans caused by Borrelia burgdorferi sensu stricto in New York and by Borrelia afzelii in Slovenia. Ann Intern Med 130: 32–36PubMedGoogle Scholar
  8. Logar M, Ruzic-Sabljic E, Maraspin V, Lotric-Furlan S, Cimperman J, Jurca T, et al (2004) Comparison of erythema migrans caused by Borrelia afzelii and Borrelia garinii. Infection 32: 15–19PubMedCrossRefGoogle Scholar
  9. Carlsson SA, Granlund H, Jansson C, Nyman D, Wahlberg P (2003) Characteristics of erythema migrans in Borrelia afzelii and Borrelia garinii infections. Scand J Infect Dis 35 (1): 31–33PubMedCrossRefGoogle Scholar
  10. Smith RP, Schoen RT, Rahn DW, Sikand VK, Nowakowski J, Parenti D, et al (2002) Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann Intern Med 136: 421–428PubMedGoogle Scholar
  11. Müllegger RR (2001) Clinical aspects and diagnosis of erythema migrans and Borrelial lymphocytoma. Acta dermatovenerologica Alpina Pannonica et Adriatica (available from: www.mf.uni-lj.si/acta-apa/acta-apa-01-4/acta-apa-01-4.html)
  12. EUCALB. European Union Concerted Action on Lyme Borreliosis (1997–2005) Clinical features of erythema migrans 1997–2005 (available from: www.oeghmp.at/eucalb/diagnosis_clinical-features-ds.html.)
  13. Åsbrink E, Olsson I (1985) Clinical manifestations of erythema chronicum migrans afzelius in 161 patients. Acta Derm Venereol (Stockh) [Suppl] 65: 43–52Google Scholar
  14. Läkemedelsverket (Medical Product Agency) (1998) Behandling av och profylax mot fästingöverförda infektioner – behandlingsrekommendationer (Treatment and prophylaxis against tick-borne infections – treatment recommendations) Information från Läkemedelsverket (in Swedish) 9 (2)Google Scholar
  15. Ornstein K, Berglund J, Bergström S, Norrby R, Barbour AG (2002) Three major Lyme Borrelia genospecies (Borrelia burgdorferi sensu stricto, B. afzelii and B. garinii) identified by PCR in cerebrospinal fluid from patients with neuroborreliosis in Sweden. Scand J Infect Dis 34 (5): 341–346PubMedCrossRefGoogle Scholar
  16. Nadelman RB, Nowakowski J, Forseter G, Goldberg NS, Bittker S, Cooper D, et al (1996) The clinical spectrum of early Lyme borreliosis in patients with culture-confirmed erythema migrans. Am J Med 100: 502–506PubMedCrossRefGoogle Scholar
  17. Olsén NJ, Kovacs WJ (1996) Gonadal steroids and immunity. Endocr Rev 17: 369–384PubMedCrossRefGoogle Scholar
  18. Widhe M (2003) Immune responses in human Lyme borreliosis. Cytokines and IgG subclasses in relation to clinical outcome. Linköping University Medical Dissertations No 778, Linköping, SwedenGoogle Scholar
  19. Jarefors S, Bennet L, You E, Forsberg P, Ekerfelt K, Berglund J, et al (2006) Lyme borreliosis reinfection: might it be explained by a gender difference in immune response? Immunology 118: 224–232PubMedCrossRefGoogle Scholar
  20. Ornstein K, Berglund J, Nilsson I, Norrby R, Bergstrom S (2001) Characterization of Lyme borreliosis isolates from patients with erythema migrans and neuroborreliosis in southern Sweden. J Clin Microbiol 39 (4): 1294–1298PubMedCrossRefGoogle Scholar
  21. Olsen B, Duffy DC, Jaensson TGT, Gylfe Å, Bonnedahl J, Bergström S (1995) Transhemispheric exchange of Lyme disease spirochetes by seabirds. J Clin Microbiol 33: 3270–3274PubMedGoogle Scholar
  22. Olsen B, Jaensson TGT, Bergström S (1995) Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds. Appl Environ Microbiol 61: 3082–3087PubMedGoogle Scholar
  23. Fraenkel CJ, Garpmo U, Berglund J (2002) Determination of novel Borrelia genospecies in Swedish Ixodes ricinus ticks. J Clin Microbiol 40 (9): 3308–3312PubMedCrossRefGoogle Scholar
  24. Strle F, Videcnik J, Zorman P, Cimperman J, Lotric-Furlan S, Maraspin V (2002) Clinical and epidemiological findings for patients with erythema migrans. Comparisons of cohorts from the years 1993 and 2000. Wien Klin Wochenschr 114 (13–14): 493–497PubMedGoogle Scholar
  25. Tylewska-Wierzbanowska S, Chmielewska T (2002) Limitation of serological testing for Lyme borreliosis: evaluation of ELISA and Western blot in comparison with PCR and culture methods. Wien Klin Wochenschr 114 (13–14): 601–605PubMedGoogle Scholar
  26. Dattwyler RJ, Wormser GP, Rush TJ, Finkel MF, Schoen RT, Grunwaldt E, et al (2005) A comparison of treatment regimens of ceftriaxone in late Lyme disease. Wien Klin Wochenschr 117 (11–12): 393–397PubMedCrossRefGoogle Scholar
  27. Berger B (1984) Erythema chronicum migrans of Lyme disease. Arch Dermatol 120: 1017–1021PubMedCrossRefGoogle Scholar
  28. Steere AC, Barthenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, et al (1983) The early clinical manifestations of Lyme disease. Ann Int Med 99: 76–82PubMedGoogle Scholar
  29. Wormser GP (2005) Prevention of Lyme borreliosis. Wien Klin Wochenschr 117 (11–12): 385–391PubMedCrossRefGoogle Scholar
  30. Bennet L, Halling A, Berglund J (2006) Increased incidence of Lyme borreliosis in southern Sweden following mild winters and during warm humid summers. Eur J Clin Microbiol Infect Dis 25 (7): 426–432PubMedCrossRefGoogle Scholar
  31. Gray (2002) Biology of Ixodes species ticks in relation to tick-borne zoonoses. Wien Klin Wochenschr 114 (13–14): 473–478PubMedGoogle Scholar
  32. Statistics Sweden 1982–1999. Data available from www.scb.se/templates/Listning2_60938.asp

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Louise Bennet
    • 1
    • 2
  • Carl-Johan Fraenkel
    • 4
  • Ulf Garpmo
    • 5
  • Anders Halling
    • 2
  • Mikael Ingman
    • 6
  • Katharina Ornstein
    • 6
  • Louise Stjernberg
    • 3
  • Johan Berglund
    • 1
    • 2
    • 3
  1. 1.Department of Clinical SciencesUniversity Hospital of Malmö, Lund UniversityMalmöSweden
  2. 2.Belkinge Institute of Research and DevelopmentKarlskronaSweden
  3. 3.Blekinge Institute of Technology, School of Health ScienceKarlskronaSweden
  4. 4.Department of Infectious DiseasesBlekinge County Hospital KarlskronaKarlskronaSweden
  5. 5.Department of Clinical MicrobiologyKalmar County HospitalSweden
  6. 6.Department of Clinical and Experimental Infectious MedicineUniversity Hospital of LundLundSweden

Personalised recommendations