Wiener klinische Wochenschrift

, Volume 118, Issue 15–16, pp 442–462 | Cite as

Molecular and clinical aspects of iron homeostasis: from anemia to hemochromatosis

Review Article

Summary

The discovery in recent years of a plethora of new genes whose products are implicated in iron homeostasis has led to rapid expansion of our knowledge in the field of iron metabolism and its underlying complex regulation in both health and disease. Abnormalities of iron metabolism are among the most common disorders encountered in practical medicine and may have significant negative impact on physical condition and life expectancy. Basic insights into the principles of iron homeostasis and the pathophysiological and clinical consequences of iron overload, iron deficiency and misdistribution are thus of crucial importance in modern medicine. This review summarizes our current understanding of human iron metabolism and focuses on the clinically relevant features of hereditary and secondary hemochromatosis, iron deficiency anemia, anemia of chronic disease and anemia of critical illness. The interconnections between iron metabolism and immunity are also addressed, in as much as they may affect the risk and course of infections and malignancies.

Keywords

Hemochromatosis Secondary iron overload Anemia of chronic disease Anemia of critical illness Iron deficiency 

Molekulare und klinische Aspekte des Eisenstoffwechsels. Von der Anämie bis zur Hämochromatose

Zusammenfassung

Die Entdeckung zahlreicher neuer Gene, deren Produkte am Eisenstoffwechsel und an dessen komplexer Regulation beteiligt sind, hat unser Wissen in diesem Bereich in den letzten Jahren rasch zunehmen lassen. Störungen der Eisenhomöostase gehören zu den häufigsten pathologischen Veränderungen im klinischen Alltag und können sich auf den Gesundheitszustand und auf die Lebenserwartung eines Patienten negativ auswirken. Daher ist ein fundiertes Wissen über den Eisenstoffwechsel sowie über die pathophysiologischen und klinischen Aspekte von Eisenüberladung, -mangel und -fehlverteilung von großer medizinischer Bedeutung. Diese Arbeit fasst den gegenwärtigen Wissensstand im Bereich des Eisenstoffwechsels zusammen, wobei der Schwerpunkt auf klinisch relevanten Fakten von hereditärer Hämochromatose, sekundärer Eisenüberladung, Eisenmangelanämie, Anämie der chronischen Erkrankung und Anämie der kritischen Erkrankung liegt. Darüber hinaus werden die Berührungspunkte von Eisenstoffwechsel und Immunsystem dargestellt, soweit sie den Zusammenhang zwischen Eisenstatus und Risiko für Infektionen und Malignome betreffen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss G (2002) Iron and immunity: a double-edged sword. Eur J Clin Invest 32 [Suppl 1]: 70PubMedCrossRefGoogle Scholar
  2. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117: 285PubMedCrossRefGoogle Scholar
  3. Pantopoulos K (2005) Regulation of Iron Metabolism. In: Weiss GVRG, Hershko C (eds) Anemia of chronic disease, Vol 30. CRC Press, Taylor & Francis Group, Boca Raton, p 1Google Scholar
  4. Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352: 1011PubMedCrossRefGoogle Scholar
  5. Pietrangelo A (2004) Hereditary hemochromatosis – a new look at an old disease. N Engl J Med 350: 2383PubMedCrossRefGoogle Scholar
  6. Yano M, Hayashi H, Yoshioka K, Kohgo Y, Saito H, Niitsu Y, et al (2004) A significant reduction in serum alanine aminotransferase levels after 3-month iron reduction therapy for chronic hepatitis C: a multicenter, prospective, randomized, controlled trial in Japan. J Gastroenterol 39: 570PubMedCrossRefGoogle Scholar
  7. Metwally MA, Zein CO, Zein NN (2004) Clinical significance of hepatic iron deposition and serum iron values in patients with chronic hepatitis C infection. Am J Gastroenterol 99: 286PubMedCrossRefGoogle Scholar
  8. Theurl I, Zoller H, Obrist P, Datz C, Bachmann F, Elliott RM, et al (2004) Iron regulates hepatitis C virus translation via stimulation of expression of translation initiation factor 3. J Infect Dis 190: 819PubMedCrossRefGoogle Scholar
  9. Gordeuk VR, Delanghe JR, Langlois MR, Boelaert JR (2001) Iron status and the outcome of HIV infection: an overview. J Clin Virol 20: 111PubMedCrossRefGoogle Scholar
  10. Kiechl S, Willeit J, Egger G, Poewe W, Oberhollenzer F (1997) Body iron stores and the risk of carotid atherosclerosis: prospective results from the Bruneck study. Circulation 96: 3300PubMedGoogle Scholar
  11. Tuomainen TP, Punnonen K, Nyyssonen K, Salonen JT (1998) Association between body iron stores and the risk of acute myocardial infarction in men. Circulation 97: 1461PubMedGoogle Scholar
  12. Gaenzer H, Marschang P, Sturm W, Neumayr G, Vogel W, Patsch J, et al (2002) Association between increased iron stores and impaired endothelial function in patients with hereditary hemochromatosis. J Am Coll Cardiol 40: 2189PubMedCrossRefGoogle Scholar
  13. Turoczi T, Jun L, Cordis G, Morris JE, Maulik N, Stevens RG, et al (2003) HFE mutation and dietary iron content interact to increase ischemia/reperfusion injury of the heart in mice. Circ Res 92: 1240PubMedCrossRefGoogle Scholar
  14. Weinberg ED (1998) Patho-ecological implications of microbial acquisition of host iron. Reviews in Medical Microbiology 9: 171Google Scholar
  15. Weinberg ED (1999) Iron therapy and cancer. Kidney Int [Suppl] 69: S131CrossRefGoogle Scholar
  16. Weiss G (2002) Iron, infection and anemia – a classical triad. Wien Klin Wochenschr 114: 357PubMedGoogle Scholar
  17. Feder JN, Penny DM, Irrinki A, Lee VK, Lebron JA, Watson N, et al (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci USA 95: 1472PubMedCrossRefGoogle Scholar
  18. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388: 482PubMedCrossRefGoogle Scholar
  19. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, et al (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291: 1755PubMedCrossRefGoogle Scholar
  20. Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al (2005) Identification of an intestinal heme transporter. Cell 122: 789PubMedCrossRefGoogle Scholar
  21. Poss KD, Tonegawa S (1997) Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA 94: 10919PubMedCrossRefGoogle Scholar
  22. Theurl I, Fritsche G, Ludwiczek S, Garimorth K, Bellmann-Weiler R, Weiss G (2005) The macrophage: a cellular factory at the interphase between iron and immunity for the control of infections. Biometals 18: 359PubMedCrossRefGoogle Scholar
  23. Weiss G (2002) Iron acquisition by the reticuloendothelial system. In: Templeton D (ed) Molecular and cellular iron transport. Marcel Dekker, New York, p 467Google Scholar
  24. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409: 198PubMedCrossRefGoogle Scholar
  25. Hvidberg V, Maniecki MB, Jacobsen C, Hojrup P, Moller HJ, Moestrup SK (2005) Identification of the receptor scavenging hemopexin-heme complexes. Blood 106: 2572PubMedCrossRefGoogle Scholar
  26. Muckenthaler M, Gray NK, Hentze MW (1998) IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol Cell 2: 383PubMedCrossRefGoogle Scholar
  27. Guo B, Phillips JD, Yu Y, Leibold EA (1995) Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem 270: 21645PubMedCrossRefGoogle Scholar
  28. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, et al (2005) The iron exporter ferroportin/Slc40 a1 is essential for iron homeostasis. Cell Metab 1: 191PubMedCrossRefGoogle Scholar
  29. Wessling-Resnick M (2006) Iron imports. III. Transfer of iron from the mucosa into circulation. Am J Physiol Gastrointest Liver Physiol 290: G1PubMedCrossRefGoogle Scholar
  30. Conrad ME, Umbreit JN (2002) Pathways of iron absorption. Blood Cells Mol Dis 29: 336PubMedCrossRefGoogle Scholar
  31. Zoller H, Koch RO, Theurl I, Obrist P, Pietrangelo A, Montosi G, et al (2001) Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120: 1412PubMedCrossRefGoogle Scholar
  32. Creagh AL, Tiong JW, Tian MM, Haynes CA, Jefferies WA (2005) Calorimetric studies of melanotransferrin (p97) and its interaction with iron. J Biol Chem 280: 15735PubMedCrossRefGoogle Scholar
  33. Sekyere EO, Dunn LL, Rahmanto YS, Richardson DR (2006) Role of melanotransferrin in iron metabolism: studies using targeted gene disruption in vivo. Blood 107: 2599PubMedCrossRefGoogle Scholar
  34. Trinder D, Oates PS, Thomas C, Sadleir J, Morgan EH (2000) Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 46: 270PubMedCrossRefGoogle Scholar
  35. Anderson GJ, Frazer DM (2005) Hepatic iron metabolism. Semin Liver Dis 25: 420PubMedCrossRefGoogle Scholar
  36. Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC (2005) Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 115: 1258PubMedCrossRefGoogle Scholar
  37. Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341: 1986PubMedCrossRefGoogle Scholar
  38. Hagler L, Askew EW, Neville JR, Mellick PW, Coppes RI Jr, Lowder JF Jr (1981) Influence of dietary iron deficiency on hemoglobin, myoglobin, their respective reductases, and skeletal muscle mitochondrial respiration. Am J Clin Nutr 34: 2169PubMedGoogle Scholar
  39. Weiss G (2005) Modification of iron regulation by the inflammatory response. Best Pract Res Clin Haematol 18: 183PubMedCrossRefGoogle Scholar
  40. Theurl I, Ludwiczek S, Eller P, Seifert M, Artner E, Brunner P, et al (2005) Pathways for the regulation of body iron homeostasis in response to experimental iron overload. J Hepatol 43: 711PubMedCrossRefGoogle Scholar
  41. Ludwiczek S, Theurl I, Bahram S, Schumann K, Weiss G (2005) Regulatory networks for the control of body iron homeostasis and their dysregulation in HFE mediated hemochromatosis. J Cell Physiol 204: 489PubMedCrossRefGoogle Scholar
  42. Abouhamed M, Gburek J, Liu W, Torchalski B, Wilhelm A, Wolff NA, et al (2006) Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein-metal complexes. Am J Physiol Renal Physiol 290: F1525PubMedCrossRefGoogle Scholar
  43. Canonne-Hergaux F, Gros P (2002) Expression of the iron transporter DMT1 in kidney from normal and anemic mk mice. Kidney Int 62: 147PubMedCrossRefGoogle Scholar
  44. Wareing M, Ferguson CJ, Green R, Riccardi D, Smith CP (2000) In vivo characterization of renal iron transport in the anaesthetized rat. J Physiol 524 Pt 2: 581PubMedCrossRefGoogle Scholar
  45. Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, et al (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell 10: 1045PubMedCrossRefGoogle Scholar
  46. Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, et al (2004) Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 15: 3073PubMedCrossRefGoogle Scholar
  47. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24: 307PubMedCrossRefGoogle Scholar
  48. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365: 1231PubMedCrossRefGoogle Scholar
  49. Wareing M, Ferguson CJ, Delannoy M, Cox AG, McMahon RF, Green R, et al (2003) Altered dietary iron intake is a strong modulator of renal DMT1 expression. Am J Physiol Renal Physiol 285: F1050PubMedGoogle Scholar
  50. Ganz T, Nemeth E (2006) Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol 290: G199PubMedCrossRefGoogle Scholar
  51. Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, et al (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110: 1037PubMedCrossRefGoogle Scholar
  52. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, et al (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113: 1271PubMedCrossRefGoogle Scholar
  53. Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, et al (2002) Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA 99: 4596PubMedCrossRefGoogle Scholar
  54. Viatte L, Nicolas G, Lou DQ, Bennoun M, Lesbordes-Brion JC, Canonne-Hergaux F, et al (2005) Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice. Blood 107: 2952PubMedCrossRefGoogle Scholar
  55. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 102: 1324PubMedCrossRefGoogle Scholar
  56. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306: 2090PubMedCrossRefGoogle Scholar
  57. Detivaud L, Nemeth E, Boudjema K, Turlin B, Troadec MB, Leroyer P, et al (2005) Hepcidin levels in humans are correlated with hepatic iron stores, hemoglobin levels, and hepatic function. Blood 106: 746PubMedCrossRefGoogle Scholar
  58. Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V (2006) TLR-4 dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 107: 3727PubMedCrossRefGoogle Scholar
  59. Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, et al (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38: 531PubMedCrossRefGoogle Scholar
  60. Huang FW, Pinkus JL, Pinkus GS, Fleming MD, Andrews NC (2005) A mouse model of juvenile hemochromatosis. J Clin Invest 115: 2187PubMedCrossRefGoogle Scholar
  61. Niederkofler V, Salie R, Arber S (2005) Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 115: 2180PubMedCrossRefGoogle Scholar
  62. Zoller H, Cox TM (2005) Hemochromatosis: genetic testing and clinical practice. Clin Gastroenterol Hepatol 3: 945PubMedCrossRefGoogle Scholar
  63. Beutler E, Hoffbrand AV, Cook JD (2003) Iron deficiency and overload. Hematology (Am Soc Hematol Educ Program): 40Google Scholar
  64. Pietrangelo A (2004) The ferroportin disease. Blood Cells Mol Dis 32: 131PubMedCrossRefGoogle Scholar
  65. Pietrangelo A, Caleffi A, Henrion J, Ferrara F, Corradini E, Kulaksiz H, et al (2005) Juvenile hemochromatosis associated with pathogenic mutations of adult hemochromatosis genes. Gastroenterology 128: 470PubMedCrossRefGoogle Scholar
  66. Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis J, et al (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33: 21PubMedCrossRefGoogle Scholar
  67. Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, et al (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36: 77PubMedCrossRefGoogle Scholar
  68. Papanikolaou G, Tzilianos M, Christakis JI, Bogdanos D, Tsimirika K, MacFarlane J, et al (2005) Hepcidin in iron overload disorders. Blood 105: 4103PubMedCrossRefGoogle Scholar
  69. Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105: 1803PubMedCrossRefGoogle Scholar
  70. Corsi B, Cozzi A, Arosio P, Drysdale J, Santambrogio P, Campanella A, et al (2002) Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism. J Biol Chem 277: 22430PubMedCrossRefGoogle Scholar
  71. Zoller H, Theurl I, Koch RO, McKie AT, Vogel W, Weiss G (2003) Duodenal cytochrome b and hephaestin expression in patients with iron deficiency and hemochromatosis. Gastroenterology 125: 746PubMedCrossRefGoogle Scholar
  72. Zoller H, Pietrangelo A, Vogel W, Weiss G (1999) Duodenal metal-transporter (DMT-1, NRAMP-2) expression in patients with hereditary haemochromatosis. Lancet 353: 2120PubMedCrossRefGoogle Scholar
  73. Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC (2002) Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100: 3776PubMedCrossRefGoogle Scholar
  74. Pietrangelo A (2005) Non-HFE hemochromatosis. Semin Liver Dis 25: 450PubMedCrossRefGoogle Scholar
  75. Trinder D, Baker E (2003) Transferrin receptor 2: a new molecule in iron metabolism. Int J Biochem Cell Biol 35: 292PubMedCrossRefGoogle Scholar
  76. Wallace DF, Summerville L, Lusby PE, Subramaniam VN (2005) First phenotypic description of transferrin receptor 2 knockout mouse, and the role of hepcidin. Gut 54: 980PubMedCrossRefGoogle Scholar
  77. Cemonesi L, Forni GL, Soriani N, Lamagna M, Fermo I, Daraio F, et al (2005) Genetic and clinical heterogeneity of ferroportin disease. Br J Haematol 131: 663PubMedCrossRefGoogle Scholar
  78. Bosio S, De Gobbi M, Roetto A, Zecchina G, Leonardo E, Rizzetto M, et al (2002) Anemia and iron overload due to compound heterozygosity for novel ceruloplasmin mutations. Blood 100: 2246PubMedCrossRefGoogle Scholar
  79. Cox TM, Halsall DJ (2002) Hemochromatosis – neonatal and young subjects. Blood Cells Mol Dis 29: 411PubMedCrossRefGoogle Scholar
  80. O'Neil J, Powell L (2005) Clinical aspects of hemochromatosis. Semin Liver Dis 25: 381PubMedCrossRefGoogle Scholar
  81. Tavill AS (2001) Diagnosis and management of hemochromatosis. Hepatology 33: 1321PubMedCrossRefGoogle Scholar
  82. Brandhagen DJ, Fairbanks VF, Baldus W (2002) Recognition and management of hereditary hemochromatosis. Am Fam Physician 65: 853PubMedGoogle Scholar
  83. Altes A, Remacha AF, Sureda A, Martino R, Briones J, Brunet S, et al (2003) Patients with biochemical iron overload: causes and characteristics of a cohort of 150 cases. Ann Hematol 82: 127PubMedCrossRefGoogle Scholar
  84. St Pierre TG, Clark PR, Chua-anusorn W, Fleming AJ, Jeffrey GP, Olynyk JK, et al (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105: 855PubMedCrossRefGoogle Scholar
  85. Nielsen P, Fischer R, Buggisch P, Janka-Schaub G (2003) Effective treatment of hereditary haemochromatosis with desferrioxamine in selected cases. Br J Haematol 123: 952PubMedCrossRefGoogle Scholar
  86. Moirand R, Mortaji AM, Loreal O, Paillard F, Brissot P, Deugnier Y (1997) A new syndrome of liver iron overload with normal transferrin saturation. Lancet 349: 95PubMedCrossRefGoogle Scholar
  87. Mendler MH, Turlin B, Moirand R, Jouanolle AM, Sapey T, Guyader D, et al (1999) Insulin resistance-associated hepatic iron overload. Gastroenterology 117: 1155PubMedCrossRefGoogle Scholar
  88. McNamara L, Gordeuk VR, MacPhail AP (2005) Ferroportin (Q248H) mutations in African families with dietary iron overload. J Gastroenterol Hepatol 20: 1855PubMedCrossRefGoogle Scholar
  89. Gordeuk V, Mukiibi J, Hasstedt SJ, Samowitz W, Edwards CQ, West G, et al (1992) Iron overload in Africa. Interaction between a gene and dietary iron content. N Engl J Med 326: 95PubMedCrossRefGoogle Scholar
  90. Gordeuk VR, Caleffi A, Corradini E, Ferrara F, Jones RA, Castro O, et al (2003) Iron overload in Africans and African-Americans and a common mutation in the SCL40A1 (ferroportin 1) gene. Blood Cells Mol Dis 31: 299PubMedCrossRefGoogle Scholar
  91. Bonkovsky HL, Troy N, McNeal K, Banner BF, Sharma A, Obando J, et al (2002) Iron and HFE or TfR1 mutations as comorbid factors for development and progression of chronic hepatitis C. J Hepatol 37: 848PubMedCrossRefGoogle Scholar
  92. Weiss G, Wachter H, Fuchs D (1995) Linkage of cellmediated immunity to iron metabolism. Immunol Today 16: 495PubMedCrossRefGoogle Scholar
  93. Oexle H, Kaser A, Most J, Bellmann-Weiler R, Werner ER, Werner-Felmayer G, et al (2003) Pathways for the regulation of interferon-gamma-inducible genes by iron in human monocytic cells. J Leukoc Biol 74: 287PubMedCrossRefGoogle Scholar
  94. Weiss G, Fuchs D, Hausen A, Reibnegger G, Werner ER, Werner-Felmayer G, et al (1992) Iron modulates interferon-gamma effects in the human myelomonocytic cell line THP-1. Exp Hematol 20: 605PubMedGoogle Scholar
  95. Weiss G, Werner-Felmayer G, Werner ER, Grunewald K, Wachter H, Hentze MW (1994) Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 180: 969PubMedCrossRefGoogle Scholar
  96. Bird CL, Witte JS, Swendseid ME, Shikany JM, Hunt IF, Frankl HD, et al (1996) Plasma ferritin, iron intake, and the risk of colorectal polyps. Am J Epidemiol 144: 34PubMedGoogle Scholar
  97. Huang X (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res 533: 153PubMedGoogle Scholar
  98. Shaheen NJ, Silverman LM, Keku T, Lawrence LB, Rohlfs EM, Martin CF, et al (2003) Association between hemochromatosis (HFE) gene mutation carrier status and the risk of colon cancer. J Natl Cancer Inst 95: 154PubMedCrossRefGoogle Scholar
  99. Hellerbrand C, Poppl A, Hartmann A, Scholmerich J, Lock G (2003) HFE C282Y heterozygosity in hepatocellular carcinoma: evidence for an increased prevalence. Clin Gastroenterol Hepatol 1: 279PubMedCrossRefGoogle Scholar
  100. Fracanzani AL, Conte D, Fraquelli M, Taioli E, Mattioli M, Losco A, et al (2001) Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease. Hepatology 33: 647PubMedCrossRefGoogle Scholar
  101. Wang SC, Lin KH, Chern JP, Lu MY, Jou ST, Lin DT, et al (2003) Severe bacterial infection in transfusion-dependent patients with thalassemia major. Clin Infect Dis 37: 984PubMedCrossRefGoogle Scholar
  102. Cappellini MD, Cohen A, Piga A, Bejaoui M, Perrotta S, Agaoglu L, et al (2005) A Phase III study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with (beta)-thalassemia. Blood 107: 3455PubMedCrossRefGoogle Scholar
  103. Hershko C, Hoffbrand AV, Keret D, Souroujon M, Maschler I, Monselise Y, et al (2005) Role of autoimmune gastritis, Helicobacter pylori and celiac disease in refractory or unexplained iron deficiency anemia. Haematologica 90: 585PubMedGoogle Scholar
  104. Weiss G (2002) Pathogenesis and treatment of anaemia of chronic disease. Blood Rev 16: 87PubMedCrossRefGoogle Scholar
  105. Weiss G, Gordeuk VR (2005) Benefits and risks of iron therapy for chronic anaemias. Eur J Clin Invest 35 [Suppl 3]: 36PubMedCrossRefGoogle Scholar
  106. Looker AC, Dallman PR, Carroll MD, Gunter EW, Johnson CL (1997) Prevalence of iron deficiency in the United States. Jama 277: 973PubMedCrossRefGoogle Scholar
  107. Umbreit J (2005) Iron deficiency: a concise review. Am J Hematol 78: 225PubMedCrossRefGoogle Scholar
  108. Schrier SD (2005) Treatment of anemia due to iron deficiency. UpToDate Edition 13.2 Vol 2005Google Scholar
  109. Annibale B, Capurso G, Chistolini A, D'Ambra G, DiGiulio E, Monarca B, et al (2001) Gastrointestinal causes of refractory iron deficiency anemia in patients without gastrointestinal symptoms. Am J Med 111: 439PubMedCrossRefGoogle Scholar
  110. James MW, Chen CM, Goddard WP, Scott BB, Goddard AF (2005) Risk factors for gastrointestinal malignancy in patients with iron-deficiency anaemia. Eur J Gastroenterol Hepatol 17: 1197PubMedCrossRefGoogle Scholar
  111. Schrier SD (2005) Causes and diagnosis of anemia due to iron deficiency. UpToDate Edition 13.2 Vol 2005Google Scholar
  112. Han AP, Yu C, Lu L, Fujiwara Y, Browne C, Chin G, et al (2001) Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. Embo J 20: 6909PubMedCrossRefGoogle Scholar
  113. Idjradinata P, Pollitt E (1993) Reversal of developmental delays in iron-deficient anaemic infants treated with iron. Lancet 341: 1PubMedCrossRefGoogle Scholar
  114. Jacobs P, Wood L, Bird AR (2000) Erythrocytes: better tolerance of iron polymaltose complex compared with ferrous sulphate in the treatment of anaemia. Hematol 5: 77PubMedGoogle Scholar
  115. Harvey RS, Reffitt DM, Doig LA, Meenan J, Ellis RD, Thompson RP, et al (1998) Ferric trimaltol corrects iron deficiency anaemia in patients intolerant of iron. Aliment Pharmacol Ther 12: 845PubMedCrossRefGoogle Scholar
  116. Nissenson AR, Berns JS, Sakiewicz P, Ghaddar S, Moore GM, Schleicher RB, et al (2003) Clinical evaluation of heme iron polypeptide: sustaining a response to rHuEPO in hemodialysis patients. Am J Kidney Dis 42: 325PubMedCrossRefGoogle Scholar
  117. Annibale B, Marignani M, Monarca B, Antonelli G, Marcheggiano A, Martino G, et al (1999) Reversal of iron deficiency anemia after helicobacter pylori eradication in patients with asymptomatic gastritis. Ann Intern Med 131: 668PubMedGoogle Scholar
  118. DuBois S, Kearney DJ (2005) Iron-deficiency anemia and helicobacter pylori infection: a review of the evidence. Am J Gastroenterol 100: 453PubMedCrossRefGoogle Scholar
  119. Afzali B, Goldsmith DJ (2004) Intravenous iron therapy in renal failure: friend and foe? J Nephrol 17: 487PubMedGoogle Scholar
  120. Steurer M, Wagner H, Gastl G (2004) Prevalence and management of anaemia in haematologic cancer patients receiving cyclic nonplatinum chemotherapy: results of a prospective national chart survey. Wien Klin Wochenschr 116: 367PubMedCrossRefGoogle Scholar
  121. Roy CN, Andrews NC (2005) Anemia of inflammation: the hepcidin link. Curr Opin Hematol 12: 107PubMedCrossRefGoogle Scholar
  122. Ludwiczek S, Aigner E, Theurl I, Weiss G (2003) Cytokine-mediated regulation of iron transport in human monocytic cells. Blood 101: 4148PubMedCrossRefGoogle Scholar
  123. Tilg H, Ulmer H, Kaser A, Weiss G (2002) Role of IL-10 for induction of anemia during inflammation. J Immunol 169: 2204PubMedGoogle Scholar
  124. Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101: 2461PubMedCrossRefGoogle Scholar
  125. Liu XB, Nguyen NB, Marquess KD, Yang F, Haile DJ (2005) Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages. Blood Cells Mol Dis 35: 47PubMedCrossRefGoogle Scholar
  126. Lee P, Peng H, Gelbart T, Wang L, Beutler E (2005) Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA 102: 1906PubMedCrossRefGoogle Scholar
  127. Lee P, Peng H, Gelbart T, Beutler E (2004) The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulindeficient hepatocytes. Proc Natl Acad Sci USA 101: 9263PubMedCrossRefGoogle Scholar
  128. Macdougall IC, Cooper AC (2005) Hyporesponsiveness to erythropoietic therapy due to chronic inflammation. Eur J Clin Invest 35 [Suppl 3]: 32PubMedCrossRefGoogle Scholar
  129. Theurl I, Mattle V, Seifert M, Mariani M, Marth C, Weiss G (2006) Dysregulated monocyte iron homeostasis and erythropoeitin formation in patients with anemia of chronic disease. Blood 107: 4142PubMedCrossRefGoogle Scholar
  130. Punnonen K, Irjala K, Rajamaki A (1997) Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood 89: 1052PubMedGoogle Scholar
  131. Horl WH, Holzer H, Mayer GJ (2002) Treatment of renal anemia with darbepoetin alfa: results of an Austrian multicenter study. Wien Klin Wochenschr 114: 967PubMedGoogle Scholar
  132. Weiss GVRG, Hershko C (2005) Anemia of chronic disease. In: Cheson BD (ed) Basic and clinical oncology, Vol 30. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  133. Eschbach JW (2002) Anemia management in chronic kidney disease: role of factors affecting epoetin responsiveness. J Am Soc Nephrol 13: 1412PubMedCrossRefGoogle Scholar
  134. Eckardt KU (2001) Anemia in critical illness. Wien Klin Wochenschr 113: 84PubMedGoogle Scholar
  135. Walsh TS, Lee RJ, Maciver CR, Garrioch M, Mackirdy F, Binning AR, et al (2006) Anemia during and at discharge from intensive care: the impact of restrictive blood transfusion practice. Intensive Care Med 32: 100PubMedCrossRefGoogle Scholar
  136. Vincent JL, Baron JF, Reinhart K, Gattinoni L, Thijs L, Webb A, et al (2002) Anemia and blood transfusion in critically ill patients. Jama 288: 1499PubMedCrossRefGoogle Scholar
  137. Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Abraham E, et al (2004) The CRIT Study: Anemia and blood transfusion in the critically ill – current clinical practice in the United States. Crit Care Med 32: 39PubMedCrossRefGoogle Scholar
  138. Munoz M, Romero A, Morales M, Campos A, Garcia-Erce JA, Ramirez G (2005) Iron metabolism, inflammation and anemia in critically ill patients. A cross-sectional study. Nutr Hosp 20: 115PubMedGoogle Scholar
  139. Rogiers P, Zhang H, Leeman M, Nagler J, Neels H, Melot C, et al (1997) Erythropoietin response is blunted in critically ill patients. Intensive Care Med 23: 159PubMedCrossRefGoogle Scholar
  140. Scharte M, Fink MP (2003) Red blood cell physiology in critical illness. Crit Care Med 31: S651PubMedCrossRefGoogle Scholar
  141. Hobisch-Hagen P, Wiedermann F, Mayr A, Fries D, Jelkmann W, Fuchs D, et al (2001) Blunted erythropoietic response to anemia in multiply traumatized patients. Crit Care Med 29: 743PubMedCrossRefGoogle Scholar
  142. La Ferla K, Reimann C, Jelkmann W, Hellwig-Burgel T (2002) Inhibition of erythropoietin gene expression signaling involves the transcription factors GATA-2 and NF-kappaB. Faseb J 16: 1811PubMedGoogle Scholar
  143. Dybedal I, Jacobsen SE (1995) Transforming growth factor beta (TGF-beta), a potent inhibitor of erythropoiesis: neutralizing TGF-beta antibodies show erythropoietin as a potent stimulator of murine burst-forming unit erythroid colony formation in the absence of a burst-promoting activity. Blood 86: 949PubMedGoogle Scholar
  144. Johnson CS, Keckler DJ, Topper MI, Braunschweiger PG, Furmanski P (1989) In vivo hematopoietic effects of recombinant interleukin-1 alpha in mice: stimulation of granulocytic, monocytic, megakaryocytic, and early erythroid progenitors, suppression of late-stage erythropoiesis, and reversal of erythroid suppression with erythropoietin. Blood 73: 678PubMedGoogle Scholar
  145. Wang CQ, Udupa KB, Lipschitz DA (1995) Interferongamma exerts its negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development. J Cell Physiol 162: 134PubMedCrossRefGoogle Scholar
  146. Baskurt OK, Gelmont D, Meiselman HJ (1998) Red blood cell deformability in sepsis. Am J Respir Crit Care Med 157: 421PubMedGoogle Scholar
  147. du Cheyron D, Parienti JJ, Fekih-Hassen M, Daubin C, Charbonneau P (2005) Impact of anemia on outcome in critically ill patients with severe acute renal failure. Intensive Care Med 31: 1529PubMedCrossRefGoogle Scholar
  148. Sabatine MS, Morrow DA, Giugliano RP, Burton PB, Murphy SA, McCabe CH, et al (2005) Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation 111: 2042PubMedCrossRefGoogle Scholar
  149. Keough-Ryan TM, Kiberd BA, Dipchand CS, Cox JL, Rose CL, Thompson KJ, et al (2005) Outcomes of acute coronary syndrome in a large Canadian cohort: impact of chronic renal insufficiency, cardiac interventions, and anemia. Am J Kidney Dis 46: 845PubMedCrossRefGoogle Scholar
  150. Wu WC, Rathore SS, Wang Y, Radford MJ, Krumholz HM (2001) Blood transfusion in elderly patients with acute myocardial infarction. N Engl J Med 345: 1230PubMedCrossRefGoogle Scholar
  151. Toy P, Popovsky MA, Abraham E, Ambruso DR, Holness LG, Kopko PM, et al (2005) Transfusion-related acute lung injury: definition and review. Crit Care Med 33: 721PubMedCrossRefGoogle Scholar
  152. Carson JL, Altman DG, Duff A, Noveck H, Weinstein MP, Sonnenberg FA, et al (1999) Risk of bacterial infection associated with allogeneic blood transfusion among patients undergoing hip fracture repair. Transfusion 39: 694PubMedCrossRefGoogle Scholar
  153. Heiss MM, Mempel W, Delanoff C, Jauch KW, Gabka C, Mempel M, et al (1994) Blood transfusion-modulated tumor recurrence: first results of a randomized study of autologous versus allogeneic blood transfusion in colorectal cancer surgery. J Clin Oncol 12: 1859PubMedGoogle Scholar
  154. Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340: 409PubMedCrossRefGoogle Scholar
  155. Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Shapiro MJ, et al (2002) Efficacy of recombinant human erythropoietin in critically ill patients: a randomized controlled trial. Jama 288: 2827PubMedCrossRefGoogle Scholar
  156. Silverberg DS, Wexler D, Blum M, Iaina A, Sheps D, Keren G, et al (2005) Effects of treatment with epoetin beta on outcomes in patients with anaemia and chronic heart failure. Kidney Blood Press Res 28: 41PubMedCrossRefGoogle Scholar
  157. Kosch M, Schaefer RM (2003) Indications and practical management of parenteral iron therapy. Wien Klin Wochenschr 115: 380PubMedGoogle Scholar
  158. Atkinson PG, Blackwell JM, Barton CH (1997) Nramp1 locus encodes a 65 kDa interferon-gamma-inducible protein in murine macrophages. Biochem J 325: 779PubMedGoogle Scholar
  159. Fritsche G, Dlaska M, Barton H, Theurl I, Garimorth K, Weiss G (2003) Nramp1 functionality increases inducible nitric oxide synthase transcription via stimulation of IFN regulatory factor 1 expression. J Immunol 171: 1994PubMedGoogle Scholar
  160. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, et al (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440: 96PubMedCrossRefGoogle Scholar
  161. Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, et al (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in ironoverload cardiomyopathy. Nat Med 9: 1187PubMedCrossRefGoogle Scholar
  162. Chen H, Attieh ZK, Su T, Syed BA, Gao H, Alaeddine RM, et al (2004) Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. Blood 103: 3933PubMedCrossRefGoogle Scholar
  163. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, et al (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403: 776PubMedCrossRefGoogle Scholar
  164. Feder JN (1999) The hereditary hemochromatosis gene (HFE): a MHC class I-like gene that functions in the regulation of iron homeostasis. Immunol Res 20: 175PubMedGoogle Scholar
  165. Fleming MD, Trenor CC 3rd, Su MA, Foernzler D, Beier DR, Dietrich WF, et al (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16: 383PubMedGoogle Scholar
  166. Fleming RE, Bacon BR (2005) Orchestration of iron homeostasis. N Engl J Med 352: 1741PubMedCrossRefGoogle Scholar
  167. Gunshin H, Starr CN, Direnzo C, Fleming MD, Jin J, Greer EL, et al (2005) Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood 106: 2879PubMedCrossRefGoogle Scholar
  168. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, et al (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5: 299PubMedCrossRefGoogle Scholar
  169. Schaer DJ, Schaer CA, Buehler PW, Boykins RA, Schoedon G, Alayash AI, et al (2006) CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 107: 373PubMedCrossRefGoogle Scholar
  170. Theil EC (2003) Ferritin: at the crossroads of iron and oxygen metabolism. J Nutr 133: 1549SPubMedGoogle Scholar
  171. Anderson GJ, Frazer DM, McKie AT, Vulpe CD, Smith A (2005) Mechanisms of haem and non-haem iron absorption: lessons from inherited disorders of iron metabolism. Biometals 18: 339PubMedCrossRefGoogle Scholar
  172. Knutson M, Wessling-Resnick M (2003) Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol Biol 38: 61PubMedGoogle Scholar
  173. Ludwiczek S, Theurl I, Artner-Dworzak E, Chorney M, Weiss G (2004) Duodenal HFE expression and hepcidin levels determine body iron homeostasis: modulation by genetic diversity and dietary iron availability. J Mol Med 82: 373PubMedCrossRefGoogle Scholar
  174. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, et al (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemiareperfusion injury. J Clin Invest 115: 610PubMedCrossRefGoogle Scholar
  175. Whitington PF, Malladi P (2005) Neonatal hemochromatosis: is it an alloimmune disease? J Pediatr Gastroenterol Nutr 40: 544PubMedCrossRefGoogle Scholar
  176. Ponka P (2002) Rare causes of hereditary iron overload. Semin Hematol 39: 249PubMedCrossRefGoogle Scholar
  177. Kawashima A, Oda Y, Yachie A, Koizumi S, Nakanishi I (2002) Heme oxygenase-1 deficiency: the first autopsy case. Hum Pathol 33: 125PubMedCrossRefGoogle Scholar
  178. Kato J, Fujikawa K, Kanda M, Fukuda N, Sasaki K, Takayama T, et al (2001) A mutation, in the iron-responsive element of H ferritin mRNA, causing autosomal dominant iron overload. Am J Hum Genet 69: 191PubMedCrossRefGoogle Scholar
  179. Mims MP, Guan Y, Pospisilova D, Priwitzerova M, Indrak K, Ponka P, et al (2005) Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload. Blood 105: 1337PubMedCrossRefGoogle Scholar
  180. Beaumont C, Delaunay J, Hetet G, Grandchamp B, de Montalembert M, Tchernia G (2006) Two new human DMT1 gene mutations in a patient with microcytic anemia, low ferritinemia, and liver iron overload. Blood 107: 4168PubMedCrossRefGoogle Scholar
  181. Iolascon A, d'Apolito M, Servedio V, Cimmino F, Piga A, Camaschella C (2006) Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2). Blood 107: 349PubMedCrossRefGoogle Scholar
  182. Miyajima H (2003) Aceruloplasminemia, an iron metabolic disorder. Neuropathology 23: 345PubMedCrossRefGoogle Scholar
  183. Bacon BR, Powell LW, Adams PC, Kresina TF, Hoofnagle JH (1999) Molecular medicine and hemochromatosis: at the crossroads. Gastroenterology 116: 193PubMedCrossRefGoogle Scholar
  184. Adams PC, Deugnier Y, Moirand R, Brissot P (1997) The relationship between iron overload, clinical symptoms, and age in 410 patients with genetic hemochromatosis. Hepatology 25: 162PubMedGoogle Scholar
  185. Adams PC, Chakrabarti S (1998) Genotypic/phenotypic correlations in genetic hemochromatosis: evolution of diagnostic criteria. Gastroenterology 114: 319PubMedCrossRefGoogle Scholar
  186. Niederau C, Fischer R, Purschel A, Stremmel W, Haussinger D, Strohmeyer G (1996) Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 110: 1107PubMedCrossRefGoogle Scholar
  187. Wojcik JP, Speechley MR, Kertesz AE, Chakrabarti S, Adams PC (2002) Natural history of C282Y homozygotes for hemochromatosis. Can J Gastroenterol 16: 297PubMedGoogle Scholar
  188. Evens AM, Mehta J, Gordon LI (2004) Rust and corrosion in hematopoietic stem cell transplantation: the problem of iron and oxidative stress. Bone Marrow Transplant 34: 561PubMedCrossRefGoogle Scholar
  189. Fargion S (1999) Dysmetabolic iron overload syndrome. Haematologica 84: 97PubMedCrossRefGoogle Scholar
  190. Rund D, Rachmilewitz E (2005) Beta-thalassemia. N Engl J Med 353: 1135PubMedCrossRefGoogle Scholar
  191. Larrick JW, Hyman ES (1984) Acquired iron-deficiency anemia caused by an antibody against the transferrin receptor. N Engl J Med 311: 214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Klinische Abteilung für Allgemeine Innere Medizin, Klinische Infektiologie und ImmunologieMedizinische Universität InnsbruckInnsbruckAustria

Personalised recommendations