Advertisement

Bodenfeuchtemessung durch Radarsatelliten: Aktuelle Entwicklungen zur Erfassung auf lokaler Ebene

  • Bernhard Bauer-Marschallinger
  • Vahid Naeimi
  • Wolfgang Wagner
Originalarbeit
  • 275 Downloads

Zusammenfassung

Die Bodenfeuchte spielt eine zentrale Rolle im hydrologischen Kreislauf auf verschiedensten Maßstabsskalen. Methoden der Satellitenfernerkundung, wie etwa die Aufnahme mit Mikrowellensensoren, erlauben eine flächendeckende Bestimmung der Bodenfeuchte rund um den Globus. Die gewonnenen Daten speisen hydrologische Modelle und Wettervorhersagen und liefern wichtige Information für den Katastrophenschutz bei Dürren und Hochwasser. Dieser Artikel gibt einen Überblick über Messmethoden und erläutert im Detail die Verfahren der Radarsatellitenfernerkundung. Danach werden aktuelle Forschungsfragen behandelt, wie sie von der Forschungsgruppe Fernerkundung an der Technischen Universität Wien behandelt werden. Im Zentrum steht das Skalenproblem, also der Widerspruch zwischen hoher räumlicher und zeitlicher Auflösung, und seine Lösung für Bodenfeuchtedaten mittels Methoden der Datenfusion. Aus dieser Forschung resultierende und andere ausgewählte derzeitig entwickelte Datenprodukte zur Bodenfeuchte und ihre Anwendungen sind im letzten Abschnitt beschrieben.

Soil Moisture Measurements Using Radar Satellites: Latest Developments for Measurement at a Local Level

Abstract

Soil moisture plays a central role in various measurement scales of the hydrological cycle. Satellite remote sensing methods, such as microwave sensors, allow comprehensive global determination of soil moisture. The data collected is used in hydrological models and weather forecasts and provides important information for disaster management in flooding and drought situations. This article offers an overview of measurement methods and explains the satellite remote sensing process in detail. It then addresses current research questions, like those being investigated by the remote sensing research group at the TU Wien. It focuses on using data fusion methods to resolve the soil-moisture data scale issue, or the discrepancy between high spatial and temporal resolution. The final section describes soil moisture data products resulting from this research and their applications, as well as other selected products currently being developed.

Notes

Danksagung

Die Autoren bedanken sich bei der Österreichischen Forschungsförderungsgesellschaft (FFG) für die Ermöglichung dieser Arbeit im Rahmen des Forschungsprojektes Nr. 840010, CreSSIDA.

Literatur

  1. Albergel, C., Dorigo, W., Balsamo, G., Muñoz-Sabater, J., de Rosnay, P., Isaksen, L., Brocca, L., de Jeu, R. and Wagner, W. (2013): Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses. Remote Sensing Envir. 138 77–89CrossRefGoogle Scholar
  2. Balsamo, A., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M., Betts, A. K., und Scipal, K. (2009): Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System. J. Hydrometeorol., 10, 623–643.CrossRefGoogle Scholar
  3. Baret, F., Campagnolo, S., Bauer-Marschallinger, B., Costa, F., Marletto, V. (2013): Integration of Remote Sensing in a Decision Support System for Vineyard Management. ESA Living Planet Symposium, Edinburgh.Google Scholar
  4. Bauer-Marschallinger, B., Dorigo, W. A., Wagner, W., van Dijk, A. I. (2013): How Oceanic Oscillation Drives Soil Moisture Variations over Mainland Australia: An Analysis of 32 Years of Satellite Observations. Journal of Climate 26(24).Google Scholar
  5. Blunden, J. und Arndt, D. S. (2012): State of the climate in 2011. Bull. Amer. Meteor. Soc., 93, S1–S282.CrossRefGoogle Scholar
  6. Brocca, L., Melone, F., Moramarco, T., Wagner, W., Hasenauer, S. (2010): ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy. Remote Sensing of Environment, 114(11), 2745–2755.CrossRefGoogle Scholar
  7. Chow, V. T., Maidment, D. M. L. (1988): Applied hydrology. McGraw-Hill Inc.Google Scholar
  8. De Lange, R., Beck, R., van De Giesen, N., Friesen, J., de Wit, A., Wagner, W. (2008): Scatterometer-derived soil moisture calibrated for soil texture with a one-dimensional water-flow model. Geoscience and Remote Sensing, IEEE Transactions on, 46(12), 4041–4049.CrossRefGoogle Scholar
  9. van Dijk, A. I. J. M., Beck, R., Crosbie, S., de Jeu, R. A. M., Liu, Y. Y., Podger, G. M., Timbal, B., Viney, N. R. (2013): The Millennium Drought in southeast Australia (2001–2009), Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res., 49, 1040–1057, doi: 10.1002/wrcr.20123.CrossRefGoogle Scholar
  10. Dorigo, W. A., Scipal, K., Parinussa, R. M., Liu, Y. Y., Wagner, W., de Jeu, R. A. M., Naeimi, V. (2010): Error Characterisation of Global Active and Passive Microwave Soil Moisture Datasets. Hydrology and Earth System Sciences 14 (12). Copernicus GmbH: 2605–16.Google Scholar
  11. Dorigo, W., De Jeu, R., Chung, D., Parinussa, R., Liu, Y., Wagner, W., Fernandez-Prieto, D. (2012): Evaluating global trends (1988–2010) in homogenized remotely sensed surface soil moisture. Geophys. Res. Lett. 39 L18405Google Scholar
  12. Dorigo, W., Reimer, C., Chung, D., Parinussa, R. M., Melzer, T., Wagner, W., de Jeu, R. A. M. and Kidd, R. (2015): [Hydrological cyce] Soil Moisture [in: “State of the Climate in 2014”]. Bulletin American Meteorological Society 96 S28–S9Google Scholar
  13. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, RK Pachauri and LA Meyer (eds)]. IPCC, Geneva, pp. 151Google Scholar
  14. Kornelsen, K. C. und Coulibaly, P. (2012): Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology.Google Scholar
  15. Lahoz, W. A. und de Lannoy, G. J. M. (2013): Closing the Gaps in Our Knowledge of the Hydrological Cycle over Land: Conceptual Problems. Surveys in Geophysics. Springer, 1–38.Google Scholar
  16. Legates, D. R., Mahmood, R., Levia, D. F., DeLiberty, T. L., Quiring, S. M., Houser, C., Nelson, F. E. (2010): Soil moisture: A central and unifying theme in physical geography. Progress in Physical Geography 35 (1), 65–86.CrossRefGoogle Scholar
  17. Mahfouf, J.-F. (2010): Assimilation of satellite-derived soil moisture from ASCAT in a limited-area NWP model. Q.J.R. Meteorol. Soc., 136: 784–798.Google Scholar
  18. Miralles, D. G., van den Berg, M. J., Gash, J. H., Parinussa, R. M., De Jeu, R. A. M., Beck, H. E., Holmes, D. J., Jimenez, C., Verhoest, N. E. C., Dorigo, W. A., Teuling, A. J. and Dolman, A. J. (2014): El Niño–La Niña cycle and recent trends in continental evaporation. Nature Climate Change 4 122–6CrossRefGoogle Scholar
  19. Muñoz, A. A., Barichivic, J., Christie, D. A., Dorigo, W., Sauchyn, D., González-Reyes, Á., Villalba, R., Lara, A., Riquelme, N. and González, M. E. (2014): Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: Linking tree rings with satellite observations of soil moisture. Austral Ecology 39 158–69CrossRefGoogle Scholar
  20. Pathe, C., Wagner, W., Sabel, D., Doubkova, M., Basara, J. B. (2009): Using ENVISAT ASAR global mode data for surface soil moisture retrieval over Oklahoma, USA. Geoscience and Remote Sensing, IEEE Transactions on 47(2), 468–480.CrossRefGoogle Scholar
  21. Paulik C, Dorigo W, Wagner W, Kidd R (2014) Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network. Int J Appl Earth Obs 30:1–8Google Scholar
  22. de Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C., Isaksen, L. (2012): A simplified EKF for the global operational soil moisture analysis at ECMWF. Q. J. R. Met. Soc. DOI: 10.1002/qj.2023 Google Scholar
  23. Schneider, S., Wang, Y., Wagner, W., Mahfouf, J.-F. (2014): Impact of ASCAT Soil Moisture Assimilation on Regional Precipitation Forecasts: A Case Study for Austria. Mon. Wea. Rev., 142, 1525–1541.Google Scholar
  24. Taylor, C. M., de Jeu, R. A. M., Guichard, F., Harris, P. P., Dorigo, W. A. (2012): Afternoon rain more likely over drier soils, Nature 489 (7416), 423–426.CrossRefGoogle Scholar
  25. UCAR (2015): COMET-Website at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research.
  26. Ulaby, F. T., Moore, R. K., Fung, A. K. (1986): Microwave Remote Sensing: Active and Passive. Vol. III – Volume Scattering and Emission Theory, Advanced Systems and Applications, Artech House, Inc., Dedham, MA, USA.Google Scholar
  27. Ummenhofer, C. C., England, M. H., McIntosh, P. C., Meyers, G. A., Pook, M. J., Risbey, J. S., Gupta, A. S., Taschetto, A. S. (2009): What causes southeast Australiaʼs worst droughts? Geophysical Research Letters 36 (4), L04706.CrossRefGoogle Scholar
  28. Verhoest, N. E. C., van den Berg, M. J., Martens, B., Lievens, H., Wood, E. F., Ming, P., Kerr, Y. H., Al Bitar, A., Tomer, S. K., Drusch, M., Vernieuwe, H., De Baets, B., Walker, J. P., Dumedah, G., Pauwels, V. R. N. (2015): Copula-Based Downscaling of Coarse-Scale Soil Moisture Observations With Implicit Bias Correction. Geoscience and Remote Sensing, IEEE Transactions, vol.53, no.6, pp.3507,3521,Google Scholar
  29. Wagner, W., Noll, J., Borgeaud, M., Rott, H. (1999a): Monitoring Soil Moisture over the Canadian Prairies with the ERS Scatterometer. Geoscience and Remote Sensing, IEEE Transactions on 37 (1). IEEE: 206–16.Google Scholar
  30. Wagner, W., Lemoine, G., Rott, H. (1999b): A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sensing of Environment 70 (2). Elsevier: 191–207.Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Bernhard Bauer-Marschallinger
    • 1
  • Vahid Naeimi
    • 1
  • Wolfgang Wagner
    • 1
  1. 1.Fachgruppe Fernerkundung, Department für Geodäsie und GeoinformationTechnische Universität WienWienÖsterreich

Personalised recommendations