Bodenfeuchtedaten aus Fernerkundung für hydrologische Anwendungen

  • S. Hasenauer
  • J. Komma
  • J. Parajka
  • W. Wagner
  • G. Blöschl
Originalarbeiten

Zusammenfassung

Die Bodenfeuchtigkeit spielt eine zentrale Rolle im hydrologischen Kreislauf auf den verschiedensten Maßstabsskalen. Fernerkundungsmethoden, wie etwa die Aufnahme mit Mikrowellen, erlauben eine flächendeckende Beschreibung der Bodenfeuchte an der Landoberfläche. Diese kann als Input für hydrologische Modelle und für Wettervorhersagemodelle, sowie als Information für den Katastrophenschutz dienen. Dieser Beitrag gibt eine Einführung in die aktuellen Entwicklungen von Bodenfeuchtigkeitsprodukten. Anhand von Fallstudien in Österreich wird der Nutzen für hydrologisch-wasserwirtschaftliche Anwendungen aufgezeigt.

Remotely sensed soil moisture data for hydrological applications

Summary

Soil moisture plays a major role in the hydrologic cycle at a range of scales. Remote sensing methods, such as microwave techniques, provide spatial information on the land surface which can be used as an input to hydrological models and weather prediction models, and as information for disaster management. This paper provides an introduction into recent developments of soil moisture products. The value of these products for hydrological and water resources applications is illustrated by case studies in Austria.

Literatur

  1. Attema E, Ulaby FT (1978) Vegetation modeled as water cloud. Radio Science, 13(2), 357–364CrossRefGoogle Scholar
  2. Bartalis Z, Wagner W, Naeimi V, Hasenauer S, Scipal K, Bonekamp H, Figa J, Anderson C (2007) Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophysical Research Letters, 34(20)Google Scholar
  3. Blöschl G, Reszler C, Komma J (2008) A spatially distributed flash flood forecasting model. Environmental Modelling and Software, 23(4), 464–478CrossRefGoogle Scholar
  4. CEOS (2008) Earth Observation Handbook. Retrieved 20 April 2009, from http://www.eohandbook.com/eohb2008/index.html
  5. Dubois PC, van Zyl J, Engman T (1995) Measuring soil moisture with imaging radars. Geoscience and Remote Sensing, IEEE Transactions on, 33(4), 915–926Google Scholar
  6. Entekhabi D, Nakamura H, Njoku EG (1994) Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Transactions on Geoscience and Remote Sensing, 32(2), 438–448CrossRefGoogle Scholar
  7. Fung AK (1994) Microwave scattering and emission models and their applications, Artech House, Boston, MAGoogle Scholar
  8. Grippa M, Woodhouse IH (2003) Retrieval of bare soil and vegetation parameters from wind scatterometer measurements over three different climatic regions. Remote Sensing of Environment, 84(1), 16–24CrossRefGoogle Scholar
  9. Hallikainen MT, Ulaby FT, Dobson MC, El-Rayes MA, Lil-Kun W (1985) Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations. Geoscience and Remote Sensing, IEEE Transactions on, GE-23(1), 25–34CrossRefGoogle Scholar
  10. Jackson TJ (2005) Estimation of surface soil moisture using microwave sensors. Encyclopedia of Hydrological Sciences, Anderson MG, John Wiley & Sons, Chichester, 799–810Google Scholar
  11. Jackson TJ, Schmugge TJ, Nicks AD, Coleman GA, Engman ET (1981) Soil moisture updating and microwave remote sensing for hydrological simulation (Oklahoma, USA). Hydrological Sciences Bulletin, 26(3), 305–319Google Scholar
  12. Kerr YH, Waldteufel P, Wigneron JP, Martinuzzi JM, Font J, Berger M (2001) Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing, 39(8), 1729–1735CrossRefGoogle Scholar
  13. Koster RD, Suarez MJ, Ducharne A, Stieglitz M, Kumar P (2000) A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. Journal of Geophysical Research D: Atmospheres, 105(D20), 24809–24822CrossRefGoogle Scholar
  14. Martínez-Fernández J, Ceballos A (2003) Temporal Stability of Soil Moisture in a Large-Field Experiment in Spain. Soil Science Society of America Journal, 67(6), 1647–1656Google Scholar
  15. Oh Y, Sarabandi K, Ulaby FT (1992) An empirical model and an inversion technique for radar scattering from bare soil surfaces. Geoscience and Remote Sensing, IEEE Transactions on, 30(2), 370–381CrossRefGoogle Scholar
  16. Parajka J, Naeimi V, Blöschl G, Komma J (2009) Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrology and Earth System Sciences, 13(2), 259–271CrossRefGoogle Scholar
  17. Pulliainen JT, Manninen T, Hallikainen MT (1998) Application of ERS-1 wind scatterometer data to soil frost and soil moisture monitoring in boreal forest zone. Geoscience and Remote Sensing, IEEE Transactions on, 36(3), 849–863CrossRefGoogle Scholar
  18. Quesney A, Le Hégarat-Mascle S, Taconet O, Vidal-Madjar D, Wigneron JP, Loumagne C, Normand M (2000) Estimation of watershed soil moisture index from ERS/SAR data. Remote Sensing of Environment, 72(3), 290–303CrossRefGoogle Scholar
  19. Reszler C, Komma J, Blöschl G, Gutknecht D (2008) Dominante Prozesse und Ereignistypen zur Plausibilisierung flächendetaillierter Niederschlag-Abflussmodelle. Hydrologie und Wasserbewirtschaftung, 52(3), 120–131Google Scholar
  20. Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, Liu S, Namkhai A (2000) The Global Soil Moisture Data Bank. Bulletin of the American Meteorological Society, 81(6), 1281–1299CrossRefGoogle Scholar
  21. Schanda E (1986) Physical Fundamentals of Remote Sensing, Springer, BerlinGoogle Scholar
  22. Schmugge TJ (1985) Remote sensing of soil moisture. Encyclopedia of Hydrological Forecasting, Anderson M, John Wiley & Sons, Chichester, 101–124Google Scholar
  23. Ulaby FT, Moore RK, Fung AK (1981) Microwave remote sensing fundamentals and radiometry. Microwave remote sensing: active and passive, Artech House, Boston, MA, 1–456Google Scholar
  24. Ulaby FT, Moore RK, Fung AK (1982) Radar remote sensing and surface scattering and emission theory. Microwave remote sensing: active and passive, Artech House, Boston, MA, 457–1064Google Scholar
  25. Ulaby FT, Moore RK, Fung AK (1986) From theory to applications. Microwave remote sensing: active and passive, Artech House, Boston, MA, 1065–2162Google Scholar
  26. Wagner W, Lemoine G, Rott H (1999) A method for estimating soil moisture from ERS Scatterometer and soil data. Remote Sensing of Environment, 70(2), 191–207CrossRefGoogle Scholar
  27. Wagner W, Scipal K, Pathe C, Gerten D, Lucht W, Rudolf B (2003) Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. Journal of Geophysical Research, 108(D19)Google Scholar
  28. Walker JP, Houser PR (2001) A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. Journal of Geophysical Research D: Atmospheres, 106(D11), 11761–11774CrossRefGoogle Scholar
  29. Walker JP, Houser PR (2005) Hydrologic data assimilation, Chapter 2. Advances in Water Science Methodologies, 25–48Google Scholar
  30. Western AW, Blöschl G (1999) On the spatial scaling of soil moisture. Journal of Hydrology, 217(3–4), 203–224CrossRefGoogle Scholar
  31. Western AW, Grayson RB, Blöschl G (2002) Scaling of soil moisture: A hydrologic perspective. Annual Review of Earth and Planetary Sciences, 30, 149–180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Hasenauer
    • 1
  • J. Komma
  • J. Parajka
  • W. Wagner
  • G. Blöschl
  1. 1.Institut für Photogrammetrie und FernerkundungTU WienWien

Personalised recommendations