e & i Elektrotechnik und Informationstechnik

, Volume 136, Issue 2, pp 168–174 | Cite as

Integrating FEM and existing traction motor design tools into an everyday engineering environment

  • Johannes GermishuizenEmail author
  • Christoph Adam


In recent years the permanent magnet synchronous machine has become the state-of-the-art for various traction applications. A fast and accurate analysis methodology, using both the analytical and finite element method, that is suitable for use in an everyday design environment is required. Furthermore, collaboration between different locations and engineering groups mean that existing design tools need to be integrated into an existing tool-chain. A framework architecture that supports distributed system engineering, single component design processes as well as an engineering to order business approach is presented. Special attention is given to the critical sudden terminal short circuit fault condition.


traction motor everyday design environment terminal short circuit 



Finite element method


Manufacturing to order


Engineering to order


Graphical user interface


Magnetic equivalent circuit


Finite element analysis


Permanent magnet


Torque per unit rotor volume in \(\mbox{Nm}\,\mbox{m}^{-3}\)


Stack length in m


Number of phases (\(m=3\))


Number of pole pairs


Electromagnetic air gap torque in Nm

\(\psi _{\text{pm}}\)

PM flux linkage in V s


Stator number of series turns


Stator per phase resistance in \(\Omega\)


Runge-Kutta stepsize


Time in s

Integration von FEM und vorhandenen Designwerkzeugen für Fahrmotoren in eine Designumgebung für den Berechnungsalltag


In den letzten Jahren ist die permanent erregte Synchronmaschine Stand der Technik in verschiedenen Traktionsanwendungen geworden. Dafür sind schnelle und genaue Berechnungsmethoden – sowohl analytische als auch Finte Elemente – erforderlich, die für eine Anwendung in der täglichen Arbeit geeignet sind. Um die Zusammenarbeit zwischen verschiedenen Entwicklungsstandorten und Abteilunge weiterhin zu gewährleisten, muss sich das Auslegungsprogramm in die existierende Toollandschaft eingliedern lassen. Es wird eine Arbeitsumgebung vorgestellt, die für arbeitsteilige Systemauslegung, Komponenten- und Auftragsentwicklung geeignet ist. Besonders wird auf den dreipoligen Stoßkurzschluss eingegangen.


Traktionsmotor Designumgebung für den Berechnungsalltag Klemmenkurzschluss 



  1. 1.
    IEC 60027-4 Letter symbols to be used in electrical technology. Rotating electric machines. Google Scholar
  2. 2.
    IEC 60404-8-1 Specifications for individual materials. Magnetically hard materials. Google Scholar
  3. 3.
    Intens®. Last checked: 22.10.2018.
  4. 4.
    Brauer, M., Germishuizen, J., Jöckel, A., Körner, O. (2004): Dynamic short circuits of traction drives: comparison of induction motors with PM synchronous motors. In Proceedings of the international conference on electrical machines. Google Scholar
  5. 5.
    Germishuizen, J., Kamper, M. (2009): IPM traction machine with single layer non-overlapping concentrated windings. IEEE Trans. Ind. Appl., 45(4), 1387–1394. CrossRefGoogle Scholar
  6. 6.
    Germishuizen, J., Stanton, S., Delafosse, V. (2010): Integrating FEM in an everyday design environment to accurately calculate the performance of IPM motors. Stud. Appl. Electromagn. Mech., 34, 235–243. Google Scholar
  7. 7.
    Germishuizen, J., Tanner, R. (2018): Calculating the PM motor inductances using the two-dimensional flux linkages. Int. J. Appl. Electromagn. Mech., 57(S1), 107–114. CrossRefGoogle Scholar
  8. 8.
    Germishuizen, J., Tanner, R. (2018): Stepped versus fixed rotor position fea solutions for 2D flux linkage maps in machine design. In Proceedings of the international conference on electrical machines. Google Scholar
  9. 9.
    Hackbart, M. (2016): Novel approach to calculate electrical currents in stator-, field- and damper-windings at three-phase sudden short-circuit for large synchronous generators. E&I, Elektrotech., 133(2), 112–120. CrossRefGoogle Scholar
  10. 10.
    Nategh, S., Barber, D., Lindberg, D., Boglietti, A., Aglen, O. (2018): Review and trends in traction motor design: primary and secondary insulation systems. In Proceedings of the international conference on electrical machines. Google Scholar
  11. 11.
    Nategh, S., Lindberg, D., Brammer, R., Boglietti, A., Aglen, O. (2018): Review and trends in traction motor design: electromagnetic and cooling system layouts. In Proceedings of the international conference on electrical machines. Google Scholar
  12. 12.
    Neubauer, M., Neudorfer, H. (2016): Optimization of the rotor bridges of permanent magnet generators for the operation with an uncontrolled rectifier. E&I, Elektrotech., 133, 73–81. CrossRefGoogle Scholar
  13. 13.
    Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (1992): Numerical recipes in FORTRAN 77. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  14. 14.
    Wild, S., Neudorfer, H. (2016): Influence of the cooling duct geometry and of radiation and natural convection on the cooling behavior of thermal highly stressed traction induction motors. E&I, Elektrotech., 133(2), 88–94. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Siemens AGNurembergGermany

Personalised recommendations