Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 136, Issue 2, pp 112–119 | Cite as

Scaling and design of miniature high-speed bearingless slice motors

  • Marcel SchuckEmail author
  • Pascal Puentener
  • Thomas Holenstein
  • Johann W. Kolar
Originalarbeit
  • 34 Downloads

Abstract

Recent years have shown a development of electrical drive systems toward high rotational speeds to increase the power density. Applications such as optical systems benefit from rotational speeds at which conventional ball bearings suffer from high losses, excessive wear, and decreased reliability. In such cases, magnetic bearings offer an interesting alternative. This work presents a universally applicable design procedure for miniature bearingless slice motors intended for rotational speeds of several hundred thousand revolutions per minute. Design trade-offs are illustrated and facilitate the selection of Pareto-optimal implementations. An exemplary motor prototype for rotational speeds of up to 760 000 rpm with a rotor diameter of 4 mm and a suitable inverter featuring an FPGA-based controller are demonstrated briefly.

Keywords

bearingless machine high rotational speed optimization scaling laws slice motor slotless 

Skalierung und Auslegung von lagerlosen Miniatur-Scheibenläufermotoren für hohe Drehzahlen

Zusammenfassung

Um die Leistungsdichte elektrischer Antriebssysteme zu erhöhen, existiert seit einigen Jahren ein Trend hin zu höheren Rotationsgeschwindigkeiten solcher Motoren. Anwendungen wie beispielsweise optische Systeme profitieren von hohen Rotationsgeschwindigkeiten, bei denen konventionelle Kugellager mit hohen Verlusten, überhöhtem Verschleiß und verringerter Zuverlässigkeit behaftet sind. In solchen Fällen bieten Magnetlager eine interessante Alternative. Die vorliegende Arbeit präsentiert einen universell einsetzbaren Designprozess für lagerlose Scheibenläufermotoren kleiner Baugröße, die für den Einsatz bei Drehzahlen von mehreren Hunderttausend Umdrehungen pro Minute vorgesehen sind. Eine Veranschaulichung der bei der Auslegung solcher Maschinen einzugehenden Kompromisse ermöglicht die Realisierung von Pareto-optimalen Designs. Ein beispielhafter Prototyp eines Motors für Drehzahlen von bis zu 760 000 U/min und einem Rotordurchmesser von 4 mm sowie ein geeigneter Umrichter mit FPGA-basierter Regelung werden kurz beschrieben.

Schlüsselwörter

hohe Drehzahlen lagerloser Motor nutenlos Optimierung Scheibenläufermotor Skalierungsgesetze 

Notes

Acknowledgements

The authors thank the company Levitronix GmbH for supporting this work.

References

  1. 1.
    Baumgartner, T., Kolar, J. W. (2015): Multivariable state feedback control of a 500 000-r/min self-bearing permanent-magnet motor. IEEE/ASME Trans. Mechatron., 20(3), 1149–1159.  https://doi.org/10.1109/TMECH.2014.2323944. CrossRefGoogle Scholar
  2. 2.
    Bertotti, G. (1988): General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn., 24(1), 621–630.  https://doi.org/10.1109/20.43994. CrossRefGoogle Scholar
  3. 3.
    Bilgen, E., Boulos, R. (1973): Functional dependence of torque coefficient of coaxial cylinders on gap width and Reynolds numbers. J. Fluids Eng., 95(1), 122–126. CrossRefGoogle Scholar
  4. 4.
    Borisavljevic, A., Polinder, H., Ferreira, J. A. (2010): On the speed limits of permanent-magnet machines. IEEE Trans. Ind. Electron., 57(1), 220–227.  https://doi.org/10.1109/TIE.2009.2030762. CrossRefGoogle Scholar
  5. 5.
    Daily, J. W., Nece, R. E. (1960): Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J. Basic Eng., 82(1), 217–230.  https://doi.org/10.1115/1.3662532. CrossRefGoogle Scholar
  6. 6.
    Deng, F. (1997): Commutation-caused eddy-current losses in permanent-magnet brushless DC motors. IEEE Trans. Magn., 33(5), 4310–4318.  https://doi.org/10.1109/20.620440. CrossRefGoogle Scholar
  7. 7.
    Duma, V. F., Podoleanu, A. G. (2013): Polygon mirror scanners in biomedical imaging: a review. In Optical Components and Materials X (Vol. 8621). Bellingham: SPIE.  https://doi.org/10.1117/12.2005065. CrossRefGoogle Scholar
  8. 8.
    Epstein, A. H. (2004): Millimeter-scale, micro-electro-mechanical systems gas turbine engines. J. Eng. Gas Turbines Power, 126(2), 205–226.  https://doi.org/10.1115/1.1739245. CrossRefGoogle Scholar
  9. 9.
    Fausz, J., Wilson, B., Hall, C., Richie, D., Lappas, V. (2009): Survey of technology developments in flywheel attitude control and energy storage systems. J. Guid. Control Dyn., 32(2), 354–365.  https://doi.org/10.2514/1.32092. CrossRefGoogle Scholar
  10. 10.
    Ferreira, J. A. (1989): Electromagnetic Modelling of Power Electronic Converters. Berlin: Springer. CrossRefGoogle Scholar
  11. 11.
    Hearn, E. J. (1997): Mechanics of Materials 2: The Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials. 3rd ed. Stoneham: Butterworth. Google Scholar
  12. 12.
    HKCM Engineering (2016): Magnet-Disc S04x02ND-45SH Datasheet. Google Scholar
  13. 13.
    Kaufmann, M., Tüysüz, A., Kolar, J. W., Zwyssig, C. (2016): High-speed magnetically levitated reaction wheels for small satellites. In Proc. Int. Symp. Power Electronics, Electrical Drives Automation and Motion (SPEEDAM) 2016 (pp. 28–33).  https://doi.org/10.1109/SPEEDAM.2016.7525889. CrossRefGoogle Scholar
  14. 14.
    Kimman, M., Langen, H., Schmidt, R. M. (2010): A miniature milling spindle with active magnetic bearings. Mechatronics, 20(2), 224–235.  https://doi.org/10.1016/j.mechatronics.2009.11.010. CrossRefGoogle Scholar
  15. 15.
    Krahenbuhl, D., Zwyssig, C., Weser, H., Kolar, J. W. (2010): A miniature 500 000-r/min electrically driven turbocompressor. IEEE Trans. Ind. Appl., 46(6), 2459–2466.  https://doi.org/10.1109/TIA.2010.2073673. CrossRefGoogle Scholar
  16. 16.
    Looser, A., Tüysüz, A., Zwyssig, C., Kolar, J. W. (2017): Active magnetic damper for ultrahigh-speed permanent-magnet machines with gas bearings. IEEE Trans. Ind. Electron., 64(4), 2982–2991.  https://doi.org/10.1109/tie.2016.2632680. CrossRefGoogle Scholar
  17. 17.
    Luomi, J., Zwyssig, C., Looser, A., Kolar, J. W. (2009): Efficiency optimization of a 100-W 500 000-r/min permanent-magnet machine including air-friction losses. IEEE Trans. Ind. Appl., 45(4), 1368–1377.  https://doi.org/10.1109/TIA.2009.2023492. CrossRefGoogle Scholar
  18. 18.
    Markovic, M., Perriard, Y. (2008): Analytical solution for rotor eddy-current losses in a slotless permanent-magnet motor: The case of current sheet excitation. IEEE Trans. Magn., 44(3), 386–393.  https://doi.org/10.1109/TMAG.2007.914620. CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Mitterhofer, H., Gruber, W. (2017): Effizienzsteigerung durch die und in der Magnetlagertechnik. E&I, Elektrotech. Inf.tech., 134(2), 191–196.  https://doi.org/10.1007/s00502-017-0487-1. CrossRefGoogle Scholar
  21. 21.
    Mitterhofer, H., Gruber, W., Amrhein, W. (2014): On the high speed capacity of bearingless drives. IEEE Trans. Ind. Electron., 61(6), 3119–3126.  https://doi.org/10.1109/TIE.2013.2272281. CrossRefGoogle Scholar
  22. 22.
    Mitterhofer, H., Jungmayr, G., Amrhein, W., Davey, K. (2018): Coaxial tilt damping coil with additional active actuation capabilities. IEEE Trans. Ind. Appl., 54(6), 5879–5887.  https://doi.org/10.1109/TIA.2018.2854263. CrossRefGoogle Scholar
  23. 23.
    Monolithic Power Systems, Inc. (2016): MPQ8039 High Current Power Half Bridge. Google Scholar
  24. 24.
    Murgatroyd, P. N. (1989): Calculation of proximity losses in multistranded conductor bunches. IEE Proc. A, Phys. Sci. Meas. Instrum. Manag. Educ., 136(3), 115–120.  https://doi.org/10.1049/ip-a-2.1989.0021. CrossRefGoogle Scholar
  25. 25.
    Pfister, P. D., Perriard, Y. (2011): Slotless permanent-magnet machines: General analytical magnetic field calculation. IEEE Trans. Magn., 47(6), 1739–1752.  https://doi.org/10.1109/TMAG.2011.2113396. CrossRefGoogle Scholar
  26. 26.
    Puentener, P., Schuck, M., Steinert, D., Nussbaumer, T., Kolar, J. W. (2018): A 150000 rpm bearingless slice motor. IEEE/ASME Trans. Mechatron.  https://doi.org/10.1109/TMECH.2018.2873894. CrossRefGoogle Scholar
  27. 27.
    Raggl, K., Nussbaumer, T., Kolar, J. W. (2009): A comparison of separated and combined winding concepts for bearingless centrifugal pumps. J. Power Electron., 9(2), 243–258. Google Scholar
  28. 28.
    Rahman, M. A., Chiba, A., Fukao, T. (2004): Super high speed electrical machines—summary. In Proc. IEEE Power Engineering Society General Meeting (Vol. 2, pp. 1272–1275).  https://doi.org/10.1109/PES.2004.1373062. CrossRefGoogle Scholar
  29. 29.
    Schoeb, R., Barletta, N. (1997): Principle and application of a bearingless slice motor. JSME Int. J., Ser. C, Mech. Syst. Mach. Elem. Manuf., 40(4), 593–598. CrossRefGoogle Scholar
  30. 30.
    Schuck, M., Da Silva Fernandes, A., Steinert, D., Kolar, J. W. (2017): A high speed millimeter-scale slotless bearingless slice motor. In Electric Machines and Drives Conference (IEMDC) 2017 (pp. 1–7). New York: IEEE Press. Google Scholar
  31. 31.
    Schwager, L., Tüysüz, A., Zwyssig, C., Kolar, J. W. (2014): Modeling and comparison of machine and converter losses for PWM and PAM in high-speed drives. IEEE Trans. Ind. Appl., 50(2), 995–1006.  https://doi.org/10.1109/TIA.2013.2272711. CrossRefGoogle Scholar
  32. 32.
    Schweitzer, G., Maslen, E. (2009): Magnetic bearings, theory, design, and application. Heidelberg: Springer. Google Scholar
  33. 33.
    Silber, S., Sloupensky, J., Dirnberger, P., Moravec, M., Amrhein, W., Reisinger, M. (2014): High-speed drive for textile rotor spinning applications. IEEE Trans. Ind. Electron., 61(6), 2990–2997.  https://doi.org/10.1109/TIE.2013.2258308. CrossRefGoogle Scholar
  34. 34.
    Steinert, D., Nussbaumer, T., Kolar, J. W. (2013): Concept of a 150 krpm bearingless slotless disc drive with combined windings. In Proc. Int. Electric Machines Drives Conf. (pp. 311–318).  https://doi.org/10.1109/IEMDC.2013.6556269. CrossRefGoogle Scholar
  35. 35.
    Steinert, D., Nussbaumer, T., Kolar, J. W. (2014): Slotless bearingless disk drive for high-speed and high-purity applications. IEEE Trans. Ind. Electron., 61(11), 5974–5986.  https://doi.org/10.1109/TIE.2014.2311379. CrossRefGoogle Scholar
  36. 36.
    VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurswesen (2010): VDI Heat Atlas. 2nd ed. Berlin: Springer. Google Scholar
  37. 37.
    Zwyssig, C., Baumgartner, T., Kolar, J. W. (2014): High-speed magnetically levitated reaction wheel demonstrator. In Proc. Int. Power Electronics Conf. (IPEC-Hiroshima 2014–ECCE ASIA) (pp. 1707–1714).  https://doi.org/10.1109/IPEC.2014.6869813. CrossRefGoogle Scholar
  38. 38.
    Zwyssig, C., Kolar, J., Round, S. (2009): Megaspeed drive systems: Pushing beyond 1 million r/min. IEEE/ASME Trans. Mechatron., 14(5), 564–574.  https://doi.org/10.1109/TMECH.2008.2009310. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Marcel Schuck
    • 1
    Email author
  • Pascal Puentener
    • 1
  • Thomas Holenstein
    • 1
  • Johann W. Kolar
    • 1
  1. 1.Power Electronic Systems LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations