Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 136, Issue 2, pp 209–215 | Cite as

Full-size converter operation of hydro power generators: a state-of-the-art review of motivations, solutions, and design implications

  • Thomas HolzerEmail author
  • Annette Muetze
Originalarbeit
  • 38 Downloads

Abstract

This paper reviews motivations and solutions for variable-speed operation in large hydro power plants with a special emphasis on full-size converter operated synchronous generators. First, the established concepts of conventional pumped storage power plants are briefly described. Then, the implemented applications with use of power converters and synchronous machines in hydro power plants, their power ratings, power converter topologies used, and the experiences obtained during operation are reviewed. Concerning its state-of-the-art position in variable-speed pumped storage power plants, the variable-speed capability offered by doubly-fed induction machines is also briefly described, including the power range that can be achieved in pumping mode as well as the power converter ratings of existing power plants. Following this comprehensive analysis, this paper identifies the requirements of today’s power converters and synchronous machines for utilization in large pumped storage power plants as full-size converter operated synchronous generators. It analyzes the design implications on the electric machines driven by such converters, and investigates the advantages of the additional possibilities given by the full-size converter operation that may outweigh the added cost, system complexity, and power loss.

Keywords

hydroelectric power generation power conversion variable-speed drives power system economics modular multilevel converter 

Betrieb von Wasserkraftgeneratoren am Umrichter: Ein Überblick über Motivation, Lösungen und Auswirkungen auf das Generatordesign

Zusammenfassung

Dieser Beitrag zeigt sowohl die Motivation als auch Lösungen für drehzahlvariablen Betrieb großer Wasserkraftwerke, mit besonderem Schwerpunkt auf den Betrieb von Synchrongeneratoren am Umrichter. Zuerst werden die konventionellen Konzepte in Pumpspeicherkraftwerken kurz dargestellt. Als nächstes werden umgesetzte Projekte von umrichterbetriebenen Synchronmaschinen in Wasserkraftwerken dargestellt, es werden die jeweilige Kraftwerksleistung, die verwendete Umrichtertopologie und die Betriebserfahrung veranschaulicht. Die doppelt gespeiste Asynchronmaschine ist der aktuelle Stand der Technik in drehzahlvariablen Pumpspeicherkraftwerken. Daher werden kurz das mit ihr erreichbare Leistungsspektrum im Pumpbetrieb dargestellt und die Dimensionierung der dafür notwendigen Umrichter anhand von Beispielkraftwerken betrachtet. Nach dieser umfassenden Untersuchung werden die aktuellen Anforderungen an Umrichter und Synchronmaschinen für den Einsatz in großen Pumpspeicherkraftwerken als umrichtergespeiste Synchrongeneratoren analysiert. Abschließend werden die zusätzlichen Möglichkeiten für das Generatordesign durch den Betrieb am Umrichter betrachtet und Vorteile durch den Betrieb am Umrichter dargestellt, die möglicherweise die zusätzlichen Kosten, Komplexität und Verluste überwiegen.

Schlüsselwörter

Wasserkraft Energieumwandlung drehzahlvariabler Betrieb Wirtschaftlichkeit von Energieerzeugungsanlagen Modular Multilevel Converter 

Notes

References

  1. 1.
    Andritz Hydro (2014): Neue Chancen fuer Pumpspeicherkraftwerke. Hydro News. Google Scholar
  2. 2.
    Fraile-Ardanuy, J., Wilhelmi, J. R., Fraile-Mora, J. J., Perez, J. I. (2006): Variable-speed hydro generation: operational aspects and control. IEEE Trans. Energy Convers., 21(2), 569–574. CrossRefGoogle Scholar
  3. 3.
    Janning, J., Schwery, A. (2009): Next generation variable speed pump-storage power stations. In 2009 13th European conference on power electronics and applications, Barcelona, Spain. Google Scholar
  4. 4.
    Steimer, P. K., Senturk, O., Aubert, S., Linder, S. (2014): Converter-fed synchronous machine for pumped hydro storage plants. In IEEE energy conversion congress and exposition (ECCE), Pittsburgh, PA, USA (pp. 4561–4567). CrossRefGoogle Scholar
  5. 5.
    Schlunegger, H. (2014): Pumping efficiency: a 100 MW converter for the Grimsel 2 pumped storage plant. ABB Review (pp. 42–47). Google Scholar
  6. 6.
    Foerster, H., Wagnitz, R. An inverter for the pump-storage power station at Forbach of the German utility Badenwerke, today EnBW. AEG Industrial Engineering GmbH, n.d. Google Scholar
  7. 7.
    Santolin, A., Pavesi, G., Cavazzini, G., Ardizzon, G. (2013): Variable-speed Pelton turbine for an efficient exploitation of the reserved flow: an Italian case study. In Hydro. Google Scholar
  8. 8.
    Hildinger, T., Koedding, L. (2013): Modern design for variable speed motor-generators – asynchronous (DFIM) and synchronous (SMFI) electric machinery – options for pumped storage power plants. In Hydro. Google Scholar
  9. 9.
    Schmidt, E., Ertl, J., Preiss, A., Zensch, R., Schuerhuber, R., Hell, J. (2011): Studies about the low voltage ride through capabilities of variable-speed motor-generators of pumped storage hydro power plants. In 21st Australasian universities power engineering conference (AUPEC), Brisbane, QLD, Australia (pp. 1–6). Google Scholar
  10. 10.
    Nicolet, C., Braun, O., Ruchonnet, N., Beguin, A., Hell, J., Avellan, F. (2016): Full size frequency converter for fast Francis pump-turbine operating mode transition. In HydroVision, Minneapolis, Minnesota. Google Scholar
  11. 11.
    Koutnik, J., Bruns, M., Meier, L., Nicolet, C. (2011): Pumped storage – grid requirements behaviour of large motor-generators and confirmation of compliance through simulation. In HydroVision. Google Scholar
  12. 12.
    Valavi, M., Nysveen, A. (2016): Variable-speed operation of hydropower plants: Past, present, and future. In XXII international conference on electrical machines (ICEM) (pp. 640–646). CrossRefGoogle Scholar
  13. 13.
    Bocquel, A., Janning, J. (2005): Analysis of a 300 MW variable speed drive for pump-storage plant applications. In EPE conference, Dresden, DE (pp. 1–10). Google Scholar
  14. 14.
    Kahlert, J., Geiger, U. (2011): Pumped storage plant Goldisthal – from planning to today’s operation. In VGB conference power plants. Google Scholar
  15. 15.
    Koutnik, J., Hildinger, T., Bruns, M. (2015): A step forward – variable speed pumped storage power plant Frades II. Wasserwirtschaft (pp. 27–32). Google Scholar
  16. 16.
    Du, S., Dekka, A., Wu, B., Zargari, N. (2018): Modular multilevel converters: analysis, control, and applications. New York: Wiley-IEEE Press. Google Scholar
  17. 17.
    Wu, B., Narimani, M. (2017): High-power converters and AC drives. 2nd ed. New York: Wiley-IEEE Press. CrossRefGoogle Scholar
  18. 18.
    Dekka, A., Wu, B., Fuentes, R. L., Perez, M., Zargari, N. R. (2017): Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Sel. Top. Power Electron., 5(4), 1631–1656. CrossRefGoogle Scholar
  19. 19.
    Holzer, T., Muetze, A. (2018): Full-size converter operation of large hydro power generators: generator design aspects. In Energy conversion congress and exposition (ECCE), Portland, OR, USA (pp. 7363–7368). Google Scholar
  20. 20.
    Traxler-Samek, G. (2014): Analytical and numerical design methods for the electromechanical calculation of hydro-generators. Habilitation, TU Darmstadt, Darmstadt, DE. Google Scholar
  21. 21.
    Engevik, E. L., Valavi, M., Nysveen, A. (2016): Efficiency and loss calculations in design of converter-fed synchronous hydrogenerators. In XXII international conference on electrical machines (ICEM), Lausanne, Switzerland (pp. 1636–1642). CrossRefGoogle Scholar
  22. 22.
    Engevik, E. L., Hestengen, T. E., Valavi, M., Nysveen, A. (2017): Effects of lifting reactance requirements on the optimal design of converter-fed synchronous hydrogenerators. In IEEE international electric machines and drives conference (IEMDC), Miami, FL, USA (pp. 1–8). Google Scholar
  23. 23.
    Perez-Diaz, J., Chazarra, M., Garcia-Gonzalez, J., Cavazzini, G., Stoppato, A. (2015): Trends and challenges in the operation of pumped-storage hydropower plants. Renew. Sustain. Energy Rev., 44, 767–784. CrossRefGoogle Scholar
  24. 24.
    Ruppert, L., Schuerhuber, R., List, B., Lechner, A., Bauer, C. (2017): An analysis of different pumped storage schemes from a technological and economic perspective. Energy, 141, 368–379. CrossRefGoogle Scholar
  25. 25.
    Vargas-Serrano, A., Hamann, A., Hedtke, S., Franck, C. M., Hug, G. (2017): Economic benefit analysis of retrofitting a fixed-speed pumped storage hydropower plant with an adjustable-speed machine. In IEEE Manchester PowerTech (pp. 1–6). Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Electric Drives and Machines InstituteGraz University of TechnologyGrazAustria

Personalised recommendations