e & i Elektrotechnik und Informationstechnik

, Volume 136, Issue 7, pp 313–317 | Cite as

Human/machine/roboter: technologies for cognitive processes

  • Georg WeichhartEmail author
  • Alois Ferscha
  • Belgin Mutlu
  • Markus Brillinger
  • Konrad Diwold
  • Stefanie Lindstaedt
  • Tobias Schreck
  • Christoph Mayr-Dorn


Intelligent manufacturing systems are based on seamless and flexible interaction in Cyber-Physical-Systems of Systems. Novel research approaches in computer science allow to bring intelligence to the shop floor in general and robotic systems in particular. New concepts are needed to support the worker in their interactions with the intelligent machines.

In the research center \(\mathit{Pro}^{2}\mathit{Future}\) cognitive approaches to manufacturing are researched in order to advance the flexibility and capabilities of human and artificial agents on the shop floor.

The results achieved so far provide new ways of human-robot interaction, support seamless reconfiguration of robotic systems and provide decision support for gaining insights in flexible production systems.

Several preliminary project results of the research center \(\mathit{Pro}^{2}\mathit{Future}\), with special attention to robotic systems, are presented in this paper.


collaborative robotics cognitive production flexible production systems cyber physical system system-of-systems 

Mensch/Maschine/Roboter: Technologien für kognitive Prozesse


Moderne und intelligente Produktionssysteme basieren auf nahtloser und flexibler Interaktion von physischen und virtuellen Systemen; Interoperabilität ist eine Notwendigkeit. Neue Forschungsansätze bringen Intelligenz in die Produktion im Allgemeinen und in robotische Systeme im Speziellen. In der Forschung werden intelligente Maschinen und die notwendigen Kommunikationsmittel und -wege zwischen diesen untersucht.

In Projekten des Forschungszentrums \(\mathit{Pro}^{2}\mathit{Future}\) werden kognitive Ansätze in der Produktion untersucht. Ziel ist die Erhöhung von Flexibilität und die Erweiterung der Fähigkeiten der Mitarbeiterinnen, Mitarbeiter und der Maschinen, Roboter.

Erste Forschungsergebnisse zeigen neue Ansätze und Möglichkeiten in der Mensch-Roboter-Kommunikation, bei der nahtlosen Rekonfiguration von robotischen Systemen, und erlauben detailierte, statistische Einblicke in flexible Produktionssysteme.

In diesem Artikel werden mehrere Projektergebnisse aus dem Forschungszentrum \(\mathit{Pro}^{2}\mathit{Future}\) vorgestellt. Ein Fokus wird hier auf Projekte mit Relevanz zu robotischen Systemen gelegt.


kollaborative Robotik kognitive Produktion flexible Produktionssysteme cyber-physisches System System-von-Systemen 



This work has been supported by \(\mathit{Pro}^{2}\mathit{Future}\) (FFG under contract No. 854184). \(\mathit{Pro}^{2}\mathit{Future}\) is funded within the Austrian COMET Program – Competence Centers for Excellent Technologies – under the auspices of the Austrian Federal Ministry of Transport, Innovation and Technology, the Austrian Federal Ministry for Digital and Economic Affairs and of the Provinces of Upper Austria and Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

It has also received support by the European Union and the State of Upper Austria within the strategic program Innovative Upper Austria 2020, project: “Smart Factory Lab”.


  1. 1.
    Akkaladevi, S. C., Plasch, M., Eitzinger, C., Pichler, A., Rinner, B. (2018): Towards reinforcement based learning of an assembly process using user interactions for human robot collaboration. Front. Robot. AI, 5, 126. CrossRefGoogle Scholar
  2. 2.
    Brillinger, M., Hadi, M. A., Haas, F., Weinzerl, M. (2019): Adaptive smart assembly concept in e-mobility: a research direction. In Proceedings of 7th Mediterranean interdisciplinary forum on social sciences and humanities (MIFS). Accepted for publication. Google Scholar
  3. 3.
    Ceneda, D., Gschwandtner, T., Miksch, S. (2019): A review of guidance approaches in visual data analysis: a multifocal perspective. Comput. Graph. Forum, 38, 861. CrossRefGoogle Scholar
  4. 4.
    Felsberger, A., Oberegger, B., Reiner, G. (2016): A review of decision support systems for manufacturing systems. In i-KNOW (Vol. 2016). Google Scholar
  5. 5.
    Gupta, S., Kar, A., Baabdullah, A., Al-Khowaiter, W. A. A. (2018): Big data with cognitive computing: a review for the future. Int. J. Inf. Manag., 42, 78–89. CrossRefGoogle Scholar
  6. 6.
    Hadi, M. A., Brillinger, M., Haas, F. (2019): Adaptive assembly approach for e-axles. In Proceedings of 4th EAI international conference on management of manufacturing systems (MMS). Accepted for publication. Google Scholar
  7. 7.
    Haslgrübler, M., Gollan, B., Ferscha, A. (2018): A cognitive assistance framework for supporting human workers in industrial tasks. IT Prof., 20(5), 48–56. CrossRefGoogle Scholar
  8. 8.
    Ikeda, M., Maddukuri, S., Hofmann, M., Pichler, A., Zhang, X., Polydoros, A., Piater, J., Winkler, K., Brenner, K., Harton, I., Neugebauer, U. (2018): Flexrop-flexible, assistive robots for customized production. In Proceedings of Austrian robotics workshop 2018. (pp. 53–58). Österreich: Innsbruck University Press. CrossRefGoogle Scholar
  9. 9.
    Kusiak, A. (2019): Fundamentals of smart manufacturing: a multi-thread perspective. Annu. Rev. Control. CrossRefGoogle Scholar
  10. 10.
    Maruyama, Y., Kato, S., Azumi, T. (2016): Exploring the performance of ros2. In Proceedings of the 13th international conference on embedded software, EMSOFT ’16 (pp. 5:1–5:10). New York: ACM. CrossRefGoogle Scholar
  11. 11.
    Panetto, H., Iung, B., Ivanov, D., Weichhart, G., Wang, X. (2019): Challenges for the cyber-physical manufacturing enterprises of the future. Annu. Rev. Control, 47, 200–213. CrossRefGoogle Scholar
  12. 12.
    Pichler, A., Akkaladevi, S. C., Ikeda, M., Hofmann, M., Plasch, M., Wögerer, C., Fritz, G. (2017): Towards shared autonomy for robotic tasks in manufacturing. Proc. Manufac., 11, 72–82. CrossRefGoogle Scholar
  13. 13.
    Romero, D., Bernus, P., Noran, O., Stahre, J., Fast-Berglund, Å. (2016): The operator 4.0: human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. In I. Nääs, O. Vendrametto, J. Mendes Reis, R. F. Gonçalves, M. T. Silva, G. von Cieminski, D. Kiritsis (Eds.), Advances in production management systems. Initiatives for a sustainable world (pp. 677–686). Cham: Springer. CrossRefGoogle Scholar
  14. 14.
    Thomay, C., Gollan, B., Haslgrübler, M., Ferscha, A., Heftberger, J. (2019): A multi-sensor algorithm for activity and workflow recognition in an industrial setting. In Proceedings of the 12th ACM international conference on pervasive technologies related to assistive environments, PETRA ’19 (pp. 69–76). New York: ACM. CrossRefGoogle Scholar
  15. 15.
    Weichhart, G., Fast-Berglund, Å., Romero, D., Pichler, A. (2018): An agent- and role-based planning approach for flexible automation of advanced production systems. In Proceedings of IEEE international conference on intelligent systems (IS). Google Scholar
  16. 16.
    Weichhart, G., Stary, C., Vernadat, F. (2018): Enterprise modelling for interoperable and knowledge-based enterprises. Int. J. Prod. Res., 56(8), 2818–2840. CrossRefGoogle Scholar
  17. 17.
    Wögerer, C., Bauer, H., Rooker, M., Ebenhofer, G., Rovetta, A., Robertson, N., Pichler, A. (2012): Locobot-low cost toolkit for building robot co-workers in assembly lines. In International conference on intelligent robotics and applications (pp. 449–459). Berlin: Springer. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.PROFACTOR GmbHSteyrÖsterreich
  2. 2.Pro²FutureLinzÖsterreich
  3. 3.Pro²FutureGrazÖsterreich
  4. 4.KnowCenter GmbHGrazÖsterreich
  5. 5.TU GrazGrazÖsterreich

Personalised recommendations