Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 136, Issue 6, pp 263–270 | Cite as

A comparative survey of power converter topologies for full-size converter operation of medium-voltage hydropower generators

  • Thomas HolzerEmail author
  • Annette Muetze
Originalarbeit
  • 47 Downloads

Abstract

This paper discusses the challenges for today’s power converter topologies when operating large synchronous motor-generators in pumped storage power plants, which is a medium-voltage high-power application. First, the available ratings and characteristics of the utilized power semiconductor switches are analyzed. Then, the practical limitations of classical multilevel voltage source converters are reviewed, particularly the individual maximum achievable operating voltage. Next, the usability of direct AC–AC converters is discussed. Due to their arbitrary scalability and excellent performance, modular multilevel converter topologies gain special attention in this paper. The characteristics of the two main arrangements, the modular multilevel converter and the modular multilevel matrix converter, are examined with respect to the torque-speed characteristic of the installed reversible-speed pump-turbines. A review of commercially available power converters for medium-voltage high-power drive applications and their specifications as well as the identification of promising power converter topologies for operation in large pumped storage power plants complete this comprehensive analysis.

Keywords

hydroelectric power generation power conversion variable-speed drives voltage-source converter modular multilevel converter modular multilevel matrix converter 

Umrichtertopologien für den Betrieb von umrichtergespeisten Mittelspannungswasserkraftgeneratoren

Zusammenfassung

Dieser Beitrag zeigt die Anforderungen an Umrichter für den Betrieb von großen Synchrongeneratoren in Pumpspeicherkraftwerken. Hierbei handelt es sich um eine Mittelspannungshochleistungsanwendung. Zuerst werden die Bemessungsgrößen und Eigenschaften der verwendeten Leistungshalbleiterschalter analysiert. Als nächstes werden die praktischen Einschränkungen von klassischen mehrstufigen Spannungszwischenkreisumrichtern untersucht, wobei den jeweils erreichbaren Betriebsspannungen besondere Aufmerksamkeit geschenkt wird. Auch auf die Verwendbarkeit von direkten AC–AC-Umrichtern wird kurz eingegangen. Aufgrund ihrer beliebigen Skalierbarkeit hin zu hohen Spannungen und ihrer exzellenten Eigenschaften erhalten modulare mehrstufige Umrichter in diesem Beitrag besondere Beachtung. Das Betriebsverhalten der zwei wichtigsten Arrangements, nämlich des Modular Multilevel Converters und des Modular Multilevel Matrix Converters, wird in Hinblick auf das Drehmoment-Drehzahl-Verhalten der installierten Pumpturbinen untersucht. Eine Übersicht über kommerziell erhältliche Umrichter für Mittelspannungshochleistungsanwendungen und deren Spezifikationen sowie eine Analyse von vielversprechenden Umrichtertopologien für den Betrieb in großen Pumpspeicherkraftwerken schließen diesen Beitrag ab.

Schlüsselwörter

Wasserkraft Energieerzeugung Energieumwandlung drehzahlvariabler Betrieb Spannungszwischenkreisumrichter Modular Multilevel Converter Modular Multilevel Matrix Converter 

Notes

References

  1. 1.
    Holzer, T., Muetze, A. (2019): Full-size converter operation of hydro power generators: a state-of-the-art review of motivations, solutions, and design implications. E&I, Elektrotech. Inf.tech., 136(2), 209–215. CrossRefGoogle Scholar
  2. 2.
    Andritz Hydro (2014): Neue Chancen fuer Pumpspeicherkraftwerke, Hydro news. Google Scholar
  3. 3.
    Fraile-Ardanuy, J., Wilhelmi, J. R., Fraile-Mora, J. J., Perez, J. I. (2006): Variable-speed hydro generation: operational aspects and control. IEEE Trans. Energy Convers., 21(2), 569–574. CrossRefGoogle Scholar
  4. 4.
    Schmidt, E., Ertl, J., Preiss, A., Zensch, R., Schuerhuber, R., Hell, J. (2011): Studies about the low voltage ride through capabilities of variable-speed motor-generators of pumped storage hydro power plants. In 21st Australasian universities power engineering conference (AUPEC), Brisbane, QLD, Australia (pp. 1–6). Google Scholar
  5. 5.
    Hell, J., Egretzberger, M., Lechner, A., Schuerhuber, R., Vaillant, Y. (2012): Full size converter solutions for pumped storage plants – a promising new technology. In Hydro, Bilbao, Spain. Google Scholar
  6. 6.
    Krug, D., Bernet, S., Fazel, S. S., Jalili, K., Malinowski, M. (2007): Comparison of 2.3-kV medium-voltage multilevel converters for industrial medium-voltage drives. IEEE Trans. Ind. Electron., 54(6), 2979–2992. CrossRefGoogle Scholar
  7. 7.
    Abu-Rub, H., Bayhan, S., Moinoddin, S., Malinowski, M., Guzinski, J. (2016): Medium-voltage drives: challenges and existing technology. IEEE Power Energy Mag., 3(2), 29–41. CrossRefGoogle Scholar
  8. 8.
    Dekka, A., Wu, B., Fuentes, R. L., Perez, M., Zargari, N. R. (2017): Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Sel. Top. Power Electron., 5(4), 1631–1656. CrossRefGoogle Scholar
  9. 9.
    Wu, B., Narimani, M. (2017): High-power converters and AC drives. New York: Wiley CrossRefGoogle Scholar
  10. 10.
    Infineon, IGBT-modules [Online], https://www.infineon.com/cms/de/product/power/igbt/igbt-modules/ [Accessed: Aug. 2019].
  11. 11.
    Mitsubishi Electric (2019): GCT (Gate Commutated Turn-off) Thyristor FGC6000AX-120DS. Datasheet. Google Scholar
  12. 12.
    ABB Switzerland Ltd. (2012): Asymmetric integrated gate-commutated thyristor 5SHY 42L6500. Datasheet. Google Scholar
  13. 13.
    ABB Switzerland Ltd. (2013): Asymmetric Integrated Gate-Commutated Thyristor 5SHY 55L4500 Datasheet. Google Scholar
  14. 14.
    Filsecker, F., Alvarez, R., Bernet, S. (2013): Comparison of 4.5-kV press-pack IGBTs and IGCTs for medium-voltage converters. IEEE Trans. Ind. Electron., 60(2), 440–449. CrossRefGoogle Scholar
  15. 15.
    Du, S., Dekka, A., Wu, B., Zargari, N. (2018): Modular multilevel converters: analysis, control, and applications. New York: Wiley–IEEE Press. Google Scholar
  16. 16.
    Hossain, J., Mahmud, A. (Eds.) (2014): Large scale renewable power generation. Singapore: Springer. Google Scholar
  17. 17.
    Rohner, S., Bernet, S., Hiller, M., Sommer, R. (2010): Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Trans. Ind. Electron., 57(8), 2633–2642. CrossRefGoogle Scholar
  18. 18.
    Islam, M. R., Guo, Y., Zhu, J. (2012): A transformer-less compact and light wind turbine generating system for offshore wind farms. In 2012 IEEE international conference on power and energy (PECon) (pp. 605–610). CrossRefGoogle Scholar
  19. 19.
    Benshaw Inc. (2018): M2L 3000 Series, Medium voltage variable frequency drive. Product brochure. Google Scholar
  20. 20.
    Schlunegger, H. (2014): Pumping efficiency: a 100 MW converter for the Grimsel 2 pumped storage plant. ABB Rev., 2(14), 42–47. Google Scholar
  21. 21.
    Rodriguez, J., Lai, J.-S., Peng, F. Z. (2002): Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron., 49(4), 724–738. CrossRefGoogle Scholar
  22. 22.
    Malinowski, M., Gopakumar, K., Rodriguez, J., Perez, M. A. (2010): A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron., 57(7), 2197–2206. CrossRefGoogle Scholar
  23. 23.
    Dekka, A., Ramezani, A., Ounie, S., Narimani, M. (2019): A new 5–level voltage source inverter. In 2019 IEEE applied power electronics conference and exposition (APEC) (pp. 2511–2515). CrossRefGoogle Scholar
  24. 24.
    Xiao, D., Ouni, S., Narimani, M. (2019): A new five-level T-type converter with SPWM for medium-voltage applications. In 2019 IEEE 28th international symposium on industrial electronics (ISIE) (pp. 2015–2020). Google Scholar
  25. 25.
    Wheeler, P. W., Rodriguez, J., Clare, J. C., Empringham, L., Weinstein, A. (2002): Matrix converters: a technology review. IEEE Trans. Ind. Electron., 49(2), 276–288. CrossRefGoogle Scholar
  26. 26.
    Kolar, J. W., Friedli, T., Rodriguez, J., Wheeler, P. W. (2011): Review of three-phase PWM AC–AC converter topologies. IEEE Trans. Ind. Electron., 58(11), 4988–5006. CrossRefGoogle Scholar
  27. 27.
    Zhang, J., Li, L., Dorrell, D. G. (2018): Control and applications of direct matrix converters: a review. Chin. J. Electr. Eng., 4(2), 18–27. CrossRefGoogle Scholar
  28. 28.
    Allebrod, S., Hamerski, R., Marquardt, R. (2008): New transformerless, scalable modular multilevel converters for HVDC-transmission. In 2008 IEEE power electronics specialists conference (pp. 174–179). CrossRefGoogle Scholar
  29. 29.
    Knaak, H. (2011): Modular multilevel converters and HVDC/FACTS: a success story. In Proceedings of the 2011 14th European conference on power electronics and applications (pp. 1–6). Google Scholar
  30. 30.
    Sau, S., Fernandes, B. G. (2017): Modular multilevel converter based variable speed drives with constant capacitor ripple voltage for wide speed range. In IECON 2017 – 43rd annual conference of the IEEE industrial electronics society (pp. 2073–2078). Google Scholar
  31. 31.
    Korn, A. J., Winkelnkemper, M., Steimer, P. (2010): Low output frequency operation of the modular multi-level converter. In 2010 IEEE energy conversion congress and exposition (pp. 3993–3997). CrossRefGoogle Scholar
  32. 32.
    Hagiwara, M., Hasegawa, I., Akagi, H. (2012): Startup and low-speed operation of an adjustable-speed motor driven by a modular multilevel cascade inverter (MMCI). In 2012 IEEE energy conversion congress and exposition (ECCE) (pp. 718–725). CrossRefGoogle Scholar
  33. 33.
    Okazaki, Y., Kawamura, W., Hagiwara, M., Akagi, H., Ishida, T., Tsukakoshi, M., Nakamura, R. (2015): Which is more suitable for MMCC-based medium-voltage motor drives, a DSCC inverter or a TSBC converter? In 2015 9th international conference on power electronics and ECCE, Asia (ICPE–ECCE Asia) (pp. 1053–1060). CrossRefGoogle Scholar
  34. 34.
    Vasiladiotis, M., Baumann, R., Haederli, C., Steinke, J. (2018): IGCT-based direct AC/AC modular multilevel converters for pumped hydro storage plants. In 2018 IEEE energy conversion congress and exposition (ECCE) (pp. 4837–4844). CrossRefGoogle Scholar
  35. 35.
    Engevik, E. L., Valavi, M., Nysveen, A. (2016): Efficiency and loss calculations in design of converter-fed synchronous hydrogenerators. In XXII international conference on electrical machines (ICEM), Lausanne, Switzerland (pp. 1636–1642). Google Scholar
  36. 36.
    Holzer, T., Muetze, A. (2018): Full-size converter operation of large hydro power generators: generator design aspects. In 2018 IEEE energy conversion congress and exposition (ECCE) (pp. 7363–7368). CrossRefGoogle Scholar
  37. 37.
    Siemens, A. G. (2008): Sinamics GM150 and SM150 medium-voltage drives. Product brochure. Google Scholar
  38. 38.
    GE (2013): MV7000, Reliable, high performance medium voltage drive. Product brochure. Google Scholar
  39. 39.
    GE (2015): MV7-Series, Ultimate waverform multi-level high power drive. Product brochure. Google Scholar
  40. 40.
    Toshiba Mitsubishi-Electric Industrial Systems Corporation (2015): TMdrive – XL85 product application guide. Product brochure. Google Scholar
  41. 41.
    Siemens AG (2017): Sinamics perfect harmony GH150. Product brochure. Google Scholar
  42. 42.
    GE (2017): GE’s MV7-5L converter with UWave technology provides compact solution enabling hydroelectric production at the heart of Ottawa, [Online], Available: https://www.gepowerconversion.com/press-releases/ge [Accessed: Aug. 2019].

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Electric Drives and Machines InstituteGraz University of TechnologyGrazAustria
  2. 2.Electric Drives and Machines InstituteGraz University of TechnologyGrazAustria

Personalised recommendations