Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 132, Issue 4–5, pp 237–248 | Cite as

Making Better Robots – Beiträge Österreichs zur Europäischen Robotics Research Roadmap

  • Michael Hofbaur
  • Andreas Müller
  • Justus Piater
  • Bernhard Rinner
  • Gerald Steinbauer
  • Markus Vincze
  • Christian Wögerer
Bericht

Zusammenfassung

Mit dem Programm Horizon 2020 verfügt die Europäische Kommission über das größte zivile Forschungsprogramm der Welt. Robotik und die eng verbundene Informations- und Kommunikationstechnologie (IKT) bilden einen Schwerpunkt des Programms. Das, für die gesellschaftliche und ökonomische Entwicklung Europas wichtige, Thema Robotik optimal in diesem Programm zu repräsentieren, ist Aufgabe des Public-Private Partnership euRobotics. Diese Organisation bildet die Schnittstelle zwischen der Europäischen Kommission und den Forschern, der Industrie und den Nutzern der Robotik. Um das Marktpotential der Robotik zu heben und die damit verbundenen zukünftigen Forschungs- und Entwicklungsfragen zu identifizieren, wurde eine Strategic Research Agenda für Robotik in Europa für die Jahre 2014–2020 entwickelt. In diesem Artikel werden Forschungsinstitutionen und Projekte in Österreich vorgestellt, die bereits an der Umsetzung dieser Roadmap arbeiten. Weiters wird aufgezeigt, wo Österreich noch Bedarf an Forschung und Entwicklung hat. Diese Bestandsaufnahme wird in die Entwicklung einer österreichischen Robotics Research Roadmap einfließen. Diese Roadmap wird von der Arbeitsgruppe Robotik der Gesellschaft für Mess-, Automatisierungs- und Robotertechnik (GMAR) entwickelt werden und sowohl Forschern und der Industrie als auch der öffentlichen Hand als Leitfaden dienen, um das Potential der Robotik in Österreich zu stimulieren und auszubauen.

Schlüsselwörter

Robotik Forschung Horizon 2020 Projekte Potential 

Making Better Robots—Austria’s contribution to the European Robotics Research Roadmap

Abstract

With the program Horizon 2020 the European commission has the largest civilian research program worldwide. Robotics and the closely related field information and communication technology (ICT) form core areas of the program. The optimal representation of this topic is immensely important for the social and economic development in Europe within the program is the mission of the public-private partnership euRobotics. This organization acts as an interface between the European commission, researcher, industry and end-user in the area of robotics. In order to lift the market potential of robotics and to identify the related research and development questions a Robotics Strategic Research Agenda for Europe for the year 2014–2020 was developed. In this article we present Austrian research institutions and projects that already work on the realization of that roadmap. Moreover, we will pinpoint areas where Austria has a need for research and development. This assessment will be integrated in the development of an Austrian Robotics Research Roadmap. This roadmap will be developed by the robotics working group within society for measurement, automation and robot technology (GMAR) and should serve research, industry and public stakeholder as a guideline to stimulate and extend the potential of robotics in Austria.

Keywords

robotics research Horizion 2020 projects potential 

Literatur

  1. 1.
    euRobotics aisbl (2014): Strategic research agenda for robotics in Europe. Google Scholar
  2. 2.
    Neubauer, M., Gattringer, H., Bremer, H. (2014): A persistent method for parameter identification of a seven-axes manipulator. Robotica, 1(14). Google Scholar
  3. 3.
    Gattringer, H., Oberhuber, B., Mayr, J., Bremer, H. (2013): Recursive methods in control of flexible joint manipulators. Multibody Syst. Dyn., 32(1), 117–131. MathSciNetCrossRefGoogle Scholar
  4. 4.
    Springer, K., Gattringer, H., Staufer, P. (2013): On time-optimal trajectory planning for a flexible link robot. In Proceedings of the institution of mechanical engineers, part I: journal of systems and control engin (Bd. 227, S. 751–762). Google Scholar
  5. 5.
    Parzer, H., Gattringer, H., Neubauer, M. (2014): Dynamic modeling and force control of a redundant robot for polishing applications. In Proceedings in applied mathematics and mechanics (Bd. 14). Google Scholar
  6. 6.
    Ramsauer, M., Kastner, M., Ferrara, P., Naderer, R., Gattringer, H. (2012): A pneumatically driven stewart platform used as fault detection device. In Applied mechanics and materials (Bd. 186, S. 227–233). Google Scholar
  7. 7.
    Staufer, P., Gattringer, H. (2012): State estimation on flexible robots using accelerometers and angular rate sensors. In Mechatronics (Bd. 2012, S. 1043–1049). Google Scholar
  8. 8.
    Gattringer, H., Bremer, H., Kastner, M. (2011): Efficient dynamic modeling for rigid multi-body systems with contact and impact – an O(n) formulation. In Acta mechanica (Bd. 219, S. 111–128). Google Scholar
  9. 9.
    Hufnagel, T., Müller, A. (2012): A Projection Method for the Elimination of Contradicting Decentralized Control Forces in Redundantly Actuated PKM. IEEE Trans. Robot., 28(3). Google Scholar
  10. 10.
    Müller, A. (2005): Internal preload control of redundantly actuated parallel manipulators – its application to backlash avoiding control. IEEE Trans. Robot., 21(4), 668–677. CrossRefGoogle Scholar
  11. 11.
    Teney, D., Piater, J. (2014): Multiview feature distributions for object detection and continuous pose estimation. Comput. Vis. Image Underst., 125, 265–282. CrossRefGoogle Scholar
  12. 12.
    Detry, R., Kraft, D., Kroemer, O., Bodenhagen, L., Peters, J., Krüger, N., Piater, J. (2011): Learning grasp affordance densities. Paladyn J. Behav. Robot., 2(1), 1–17. CrossRefGoogle Scholar
  13. 13.
    Detry, R., Piater, J. (2013): Unsupervised learning of predictive parts for cross-object grasp transfer. In IEEE/RSJ international conference on intelligent robots and systems (S. 1720–1727). Google Scholar
  14. 14.
    Ugur, E., Piate, J. (2015): Bottom-up learning of object categories, action effects and logical rules: from continuous manipulative exploration to symbolic planning. In International conference on robotics and automation. Google Scholar
  15. 15.
    Szedmak, S., Ugur, E., Piater, J. (2014): Knowledge propagation and relation learning for predicting action effects. In IEEE/RSJ international conference on intelligent robots and systems (S. 623–629). Google Scholar
  16. 16.
    Andre, T., Neuhold, D., Bettstetter, C. (2014): Coordinated multi-robot exploration: out of the box packages for ROS. In Proceedings of the IEEE GLOBECOM WiUAV workshop. Google Scholar
  17. 17.
    Andre, T., Hummel, K., Schoellig, A., Yanmaz Mahdi Asadpour, E., Bettstetter, C., Grippa, P., Hellwagner, H., Sand, S., Zhang, S. (2014): Application-driven design of aerial communication networks. IEEE Commun. Mag., 52(5), 129–137. CrossRefGoogle Scholar
  18. 18.
    Fehervari, I., Elmenreich, W. (2010): Evolving neural network controllers for a team of self-organizing robots. J. Robot., 10. Google Scholar
  19. 19.
    Khan, A., Yanmaz, E., Rinner, B. (2015): Information exchange and decision making in micro aerial vehicle networks for cooperative search. In IEEE transactions on control of networked systems. Google Scholar
  20. 20.
    Mersheeva, V., Friedrich, G. (2015): Multi-UAV monitoring with priorities and limited energy resources. In Proceedings of International Conference on Automated Planning and Scheduling (ICAPS). Google Scholar
  21. 21.
    Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., Rinner, B. (2010): Networked UAVs as aerial sensor network for disaster management applications. E&I, Elektrotech. Inf.tech., 127(3), 56–63. CrossRefGoogle Scholar
  22. 22.
    Rinner, B., Quaritsch, M., Wischounig-Strucl, D., Yahyanejad, S. (2014): Apparatus and method for generating an overview image of a plurality of images using an accuracy information. U.S. Patent. Google Scholar
  23. 23.
    Saeed, Y., Rinner, B. (2014): A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs. ISPRS J. Photogramm. Remote Sens. Google Scholar
  24. 24.
    Yanmaz, E., Kuschnig, R., Bettstetter, C. (2013): Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility. In Proc. IEEE INFOCOM (S. 120–124). Google Scholar
  25. 25.
    Schlegl, T., Kröger, T., Gaschler, A., Khatib, O., Zangl, H. (2013): Virtual whiskers: highly responsive robot collision avoidance. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. Google Scholar
  26. 26.
    Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Fraundorfer, F., Kosmatopoulos, E. B., Martinelli, A., Achtelik, M. W., Chli, M., Chatzichristofis, S. A., Kneip, L., Gurdan, D., Heng, L., Lee, G. H., Lynen, S., Meier, L., Pollefeys, M., Renzaglia, A., Siegwart, R., Stumpf, J. C., Tanskanen, P., Troiani, C., Weiss, S. (2014): Vision-Controlled Micro Flying Robots: from System Design to Autonomous Navigation and Mapping in GPS-denied Environments. IEEE Robot. Autom. Mag. 21(3). Google Scholar
  27. 27.
    Wendel, A., Maurer, M., Graber, G., Pock, T., Bischof, H. (2012): Dense reconstruction on-the-fly. In 2012 IEEE conference on Computer Vision and Pattern Recognition (CVPR) (S. 1450–1457). CrossRefGoogle Scholar
  28. 28.
    Heber, M., Rüther, M., Bischof, H. (2010): Catadioptric multiview pose estimation for robotic pick and place. In International conference on computer vision theory and applications (VISAPP) (S. 423–426). Google Scholar
  29. 29.
    Mostegel, C., Wendel, A., Bischof, H. (2014): Active monocular localization: towards autonomous monocular exploration for multirotor MAVs. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (S. 3848–3855). Google Scholar
  30. 30.
    Steinbauer, G., Kleiner, A. (2012): Towards CSP-based mission dispatching in C2/C4I systems. In IEEE international symposium on Safety Security and Rescue Robotics (SSRR), College Station, TX, USA. Google Scholar
  31. 31.
    Action-Based Imperative Programming with YAGI, Ferrein, A., Steinbauer, G., Vassos, S. (2012): In Proceedings of the 8th international workshop on Cognitive Robotics (CogRob-2012) of the 26th AAAI conference (AAAI-2012) conference, Toronto ON, Canada. Google Scholar
  32. 32.
    Zaman, S., Steinbauer, G., Maurer, J., Lepej, P., Uran, S. (2013): An integrated model-based diagnosis and repair architecture for ROS-based robot systems. In ICRA 2013 (S. 482–489). Google Scholar
  33. 33.
    Gspandl, S., Pill, I., Reip, M., Steinbauer, G., Ferrein, A. (2011): Belief management for high-level robot programs. In International Joint Conference on Artificial Intelligence (IJCAI) (S. 900–905). Google Scholar
  34. 34.
    Wotawa, F. (2012): Adaptive autonomous systems – from the system’s architecture to testing. In R. Hänle, J. Knoop, T. Margaria, D. Schreiner, B. Steffen (Hrsg.), Communications in computer and information science, leveraging applications of formal methods, verification, and validation (Bd. 336, S. 76–90). Berlin: Springer. ISBN 978-3-642-34780-1. CrossRefGoogle Scholar
  35. 35.
    Papoutsakis, K., Wohlkinger, W., Mayer, P., Panek, P., Hofmann, S., Koertner, T., Weiss, A., Argyros, A., Vincze, M., Fischinger, D., Einramhof, P. (2014): Hobbit, a care robot supporting independent living at home: First prototype and lessons learned. Robot. Auton. Syst. Google Scholar
  36. 36.
    Weiss, A., Vincze, M., Huber, A., Lammer, L. (2014): Designing adaptive roles for socially assistive robots: a new method to reduce technological determinism and role stereotypes. J. Hum.-Robot Interact., 3. Google Scholar
  37. 37.
    Aldoma, A., Tombari, F., di Stefano, L., Vincze, M. (2012): A global hypotheses verification method for 3d object recognition. In European Conference on Computer Vision 2012 (ECCV2012). Google Scholar
  38. 38.
    Fischinger, D., Weiss, A., Vincze, M. (2015): Learning grasps with topographic features. Int. J. Robot. Res. Google Scholar
  39. 39.
    Wohlkinger, W., Vincze, M. (2011): Shape-based depth image to 3d model matching and classification with inter-view similarity. In Proc. of the IEEE/RSJ international conference on intelligent robots and systems 2011. Google Scholar
  40. 40.
    Aldoma, A., Marton, Z.-C., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B., Radu Bodgan, Rusu, Suat, Gedikli (2012): Using the point cloud library for 3d object recognition and 6d of pose estimation. IEEE Robot. Autom. Mag., 2012, 12. Google Scholar
  41. 41.
    Pichler, A., Wögerer, C. (2011): Towards robot systems for small batch manufacturing. In ISAM 2011, international symposium on assembly and manufacturing, Tampere, Finland. Google Scholar
  42. 42.
    Barattini, P., Wögerer, C., Robertson, N., Morand, C., Pichler, A., Rovetta, A., Corradini, A., Samani, H., Hopgood, J., Almajai, I. (2012): Human interaction with industrial collaborative autonomous robots. In Workshop on the 21st IEEE international symposium on robot and human interactive communication, Paris, France. Google Scholar
  43. 43.
    Wögerer, C., Bauer, H., Rooker, M., Ebenhofer, G., Rovetta, A., Robertson, N., Pichler, A. (2012): LOCOBOT – low cost toolkit for building robot co-workers in assembly lines. In International Conference on Intelligent Robotics and Applications (ICIRA) (S. 449–459). CrossRefGoogle Scholar
  44. 44.
    Wögerer, Ch., Pichler, A., Plasch, M., Bauer, H., Rovetta, A., Tornari, M., Barattini, P., Bonasso, M., Neumann, R., Röttenbacher, M., Staehr, M., Strassmeir, Ch., Hopgood, J., Almajai, I., Morand, C., Robertson, N., Ferrara, P. (2013): Tailor made robot co workers based on a Plug&Produce framework. In 23rd international conference on Flexible Automation and Intelligent Manufacturing (FAIM), Porto, Portugal. Google Scholar
  45. 45.
    Woegerer, Ch., Pichler, A., Rooker, M., Angerer, A., Capco, J., Heindl, Ch., Olarra, A., Fuentes, E. (2013): Flexible grasping of electronic consumer goods. In FAIM 13, 23rd international conference on Flexible Automation and Intelligent Manufacturing (FAIM), Porto, Portugal. Google Scholar
  46. 46.
    Wögerer, Ch., Pichler, A., Plasch, M., Bauer, H., Rovetta, A., Tornari, M., Barattini, P., Bonasso, M., Neumann, R., Röttenbacher, M., Staehr, M., Strassmeir, Ch., Hopgood, J., Almajai, I., Morand, C., Robertson, N., Ferrara, P. (2013): Tailor made robot co workers based on a plug & produce framework. In Robotics in smart manufacturing, WRSM 2013. CCIS (Bd. 371, S. 113–126). Google Scholar
  47. 47.
    Woegerer, Ch., Pichler, A., Rooker, M., Angerer, A., Capco, J., Heindl, Ch., Olarra, A., Fuentes, E. (2013): Flexible grasping of electronic consumer goods. In Robotics in smart manufacturing, WRSM 2013. CCIS (Bd. 371, S. 158–169). Google Scholar
  48. 48.
    Wögerer, Ch., Rooker, M., Pichler, A., Angerer, A., Wallhoff, F., Blume, J., Bannatt, A., Ferrara, P., Olarra, A., Kiirikki, J. (2013): A robotic assistance system for flexible packaging consumer goods using in electronic industry. 22nd international workshop on Robotics in Alpe-Adria-Danube region (RAAD), Slovenia, Portorož. Google Scholar
  49. 49.
    Barattini, P., Morand, C., Almajai, I., Robertson, N., Hopgood, J., Ferrara, P., Bonasso, M., Strassmair, C., Rottenbacher, M., Staehr, M., Neumann, R., Tornari, M., Rovetta, A., Plasch, M., Bauer, H., Capco, J., Woegerer, C., Pichler, A. (2013): Towards Tailor made robot co workers based on a plug & produce framework”. In 2013 IEEE International Symposium on Assembly and Manufacturing (ISAM), Xi’an, China. Google Scholar
  50. 50.
    Woegerer, Ch., Rooker, M., Angerer, A., Kopf, Ch., Pichler, A. (2014): A fast and accurate recognition system for flexible grasping of electronic goods. In 24th international conference on Flexible Automation and Intelligent Manufacturing (FAIM), San Antonio, Texas, USA. Google Scholar
  51. 51.
    Rooker, M., Wögerer, C., Angerer, A., Kopf, C., Capco, J., Olarra, A., Fuentes, E., Zwicker, C., Pichler, A. (2014): Flexible grasping of electronic consumer goods. Int. J. Adv. Manuf. Technol. Google Scholar

Copyright information

© Springer Verlag Wien 2015

Authors and Affiliations

  • Michael Hofbaur
    • 1
  • Andreas Müller
    • 2
  • Justus Piater
    • 3
  • Bernhard Rinner
    • 4
  • Gerald Steinbauer
    • 5
  • Markus Vincze
    • 6
  • Christian Wögerer
    • 7
  1. 1.Joanneum Research Forschungsgesellschaft mbHInstitut für Robotik und MechatronikKlagenfurt am WörtherseeÖsterreich
  2. 2.Institut für RobotikJohannes Kepler Universität LinzLinzÖsterreich
  3. 3.Institut für InformatikUniversität InnsbruckInnsbruckÖsterreich
  4. 4.Institut für Vernetzte und Eingebettete SystemeAlpen-Adria-Universität KlagenfurtKlagenfurt am WörtherseeÖsterreich
  5. 5.Institut für SoftwaretechnologieTechnische Universität GrazGrazÖsterreich
  6. 6.Institut für Automatisierungs- und RegelungstechnikTechnische Universität WienWienÖsterreich
  7. 7.Profactor GmbHSteyr-GleinkÖsterreich

Personalised recommendations