Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 129, Issue 1, pp 18–27 | Cite as

Mathematische Modellierung und Analyse eines DRT-VLF-Hochspannungsprüfgenerators

  • W. Kemmetmüller
  • A. Kugi
Originalarbeiten

Zusammenfassung

Durch den forcierten Ausbau von regenerativen dezentralen Energieerzeugungssystemen werden in den letzten Jahren vermehrt Hoch- und Höchstspannungskabel eingesetzt, zu deren Qualitätskontrolle effiziente Prüfmöglichkeiten vor Ort erforderlich sind. Dazu werden vermehrt Prüfgeneratoren mit einer sehr niedrigen Frequenz (VLF) eingesetzt. Dieser Beitrag beschäftigt sich mit der mathematischen Modellierung und der Analyse des dynamischen Verhaltens eines neuartigen VLF-Prüfgenerators. Dazu wird, basierend auf einem Referenzmodell, ein für die Analyse geeignetes Hüllkurvenmodell hergeleitet. Beide Modelle werden anhand von Messdaten validiert. Im letzten Teil des Beitrages werden wesentliche dynamische Eigenschaften des Prüfgenerators analysiert.

Schlüsselwörter

Hochspannungsprüfgenerator Mathematische Modellierung Hüllkurvenmodell Analyse 

Mathematical modeling and analysis of a DRT-VLF high voltage test generator

Summary

Due to the forced construction of regenerative decentralized power generation systems, high and ultra high voltage cables are frequently used, such that the demand on an efficient possibility for the on-site testing of the quality of the cables has increased in recent years. Therefore, test generators with very low frequencies (VLF) are frequently used. This paper deals with the mathematical modeling and the analysis of the dynamical system behavior of a novel VLF test generator. Based on a reference model, an envelope model is derived which is well suited for the analysis of the dynamical system behavior. Both models are validated by means of measurement results. The last part of this paper is concerned with the analysis of the important dynamical features of the test generator.

Keywords

High voltage test generator Mathematical modeling Envelope model Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Caliskan, V., Verghese, G., Stankovic, A. (1996): Multi-frequency averaging of DC/DC converters. In: IEEE workshop on computers in power electronics, S. 113–119, Portland, USAGoogle Scholar
  2. Cao, Z., Fröhleke, N., Böcker, J. (2009): Converter and Control Design for Very Low-Frequency High-Voltage Test System. In: Proc. of the 2009 IEEE Energy Conversion Congress and Exposition ECCE, S. 2168–2175, San Jose, USAGoogle Scholar
  3. Coors, P., Schierig, S. (2008): HV AC Testing of Super-Long Cables. In: Proc. of the 2008 IEEE Int. Symposium on Electrical Insulation, S. 636–640, Vancouver, CanadaGoogle Scholar
  4. Egretzberger, M., Kugi, A. (2010): A dynamical envelope model for vibratory gyroscopes. Microsyst. Technol., 16: 777–786CrossRefGoogle Scholar
  5. IEEE Power Engineering Society (2004): IEEE Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF). IEEE Std. 400.2, USAGoogle Scholar
  6. Krüger, M., Feurstein, R., Filz, A. (1990): New very low frequency methods for testing extruded cables. In: Proc. of the 1990 Int. Symposium on Electrical Insulation, S. 286–289, Toronto, CanadaGoogle Scholar
  7. Mohaupt, P. (2008): New Concept for VLF Test Voltage Generation for Application in the HV und UHV Range. In: Proc. of the 2008 IWD CIGRE, Mallorca, SpainGoogle Scholar
  8. Mohaupt, P. (2009a): VLF-Prüfgenerator. Patentnr. WO 2009/143544 A2Google Scholar
  9. Mohaupt, P. (2009b): VLF-Prüfgenerator. Patentnr. WO 2009/143543 A2Google Scholar
  10. Muhr, M., Sumereder, C., Woschitz, R. (2001): The use of the 0.1 Hz cable testing method as substitution to 50 Hz measurements and the application for PD measuring and cable fault location. In: Proc. of the 12th Int. Symposium on High Voltage Engineering, Bangalore, IndienGoogle Scholar
  11. Oetjen, H. (2004): Principles and Field Experience with the 0.1 Hz VLF Method regarding the Test of Medium Voltage Distribution Cables. In: Proc. of the 2004 IEEE Int. Symposium on Electrical Insulation, S. 376–379, Indianapolis, USAGoogle Scholar
  12. Peschel, S. G. (2001): Very Low Frequency High Voltage Sinusoidal Electric Testing Method, Systems and Apparatus. Patentnr. US 6169406B1Google Scholar
  13. Pietsch, R., Hausschild, W. (2005): HV On-Site Testing with Partial Discharge Measurement. In: Brochure of the CIGRE Working Group D1.33.05Google Scholar
  14. Sanders, J. A., Verhulst, F. (1985): Averaging Methods in Nonlinear Dynamical Systems. Springer, New York, USAGoogle Scholar
  15. Xinlao, W., Yonghong, W., Qinggua, C., Sen, M. (1997): A New Type of VLF High Voltage Generator. In: Proc. of the 5th Int. Conf. on Properties and Applications of Dielectric Materials, S. 1113–1115, Seoul, KoreaGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • W. Kemmetmüller
    • 1
  • A. Kugi
    • 1
  1. 1.Institut für Automatisierungs- und RegelungstechnikTechnische Universität WienWienAustria

Personalised recommendations