e & i Elektrotechnik und Informationstechnik

, Volume 129, Issue 1, pp 28–33 | Cite as

Schnelle Rasterkraftmikroskopie durch moderne Regelungstechnik und mechatronische Systemintegration

  • J. Steininger
  • S. Kuiper
  • S. Ito
  • G. Schitter


Für die Rasterkraftmikroskopie (AFM) ist eine schnelle und hochpräzise Führung der AFM-Positioniereinheit und Messspitze ausschlaggebend. Besonders bei hohen Scangeschwindigkeiten führt die Dynamik der AFM-Positioniereinheit zu Abbildungsartefakten, wodurch die maximale Messgeschwindigkeit und Bildqualität eingeschränkt wird. In diesem Artikel werden moderne Ansätze diskutiert, welche zu einer signifikanten Steigerung der Messgeschwindigkeiten führen.


Rastersondenmikroskopie Rasterkraftmikroskop Regelungstechnik Nanotechnologie Nanometrologie 

High-speed atomic force microscopy by modern control and mechatronic system integration


In atomic force microscopy (AFM) high-performance and high precision control of the scanning-system is crucial. At high imaging speeds the dynamic behaviour of the scanner may cause imaging artefacts limiting the maximum imaging rate. This contribution discusses recent improvements for faster imaging by utilizing modern mechatronic and control engineering methods.


SPM AFM Scanning probe Control Nanotechnology Nanometrology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., Hansma, P., Longmire, M., Gurley, J. (1989): An atomic-resolution atomic-force microscope implemented using an optical lever. J. Appl. Phys., 65: 164CrossRefGoogle Scholar
  2. Bhikkaji, B., Ratnam, M., Fleming, A. J., Moheimani, S. O. R. (2007): High performance control of piezoelectric tube scanners. IEEE Trans. Control Syst. Technol., 15: 853–866CrossRefGoogle Scholar
  3. Binnig, G., Quate, C., Gerber, C. (1986): Atomic force microscope. Phys. Rev. Lett., 56 (9): 930–933CrossRefGoogle Scholar
  4. Binnig, G., Smith, D. (1986): Single-tube three-dimensional scanner for scanning tunneling microscopy. Rev. Sci. Instrum., 57: 1688–1698CrossRefGoogle Scholar
  5. Croft, D., Shed, G., Devasia, S. (2001): Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy applications. AMSE J. Dyn. Syst. Meas. Control, 123: 35–43CrossRefGoogle Scholar
  6. Dosch, J., Inman, D., Garcia, E. (1992): A self-sensing piezoelectric actuator for collocated control. J. Intell. Mater. Syst. Struc., 3: 166–185CrossRefGoogle Scholar
  7. Fleming, A., Moheimani, S. (2006): Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners. IEEE Trans. Control Syst. Technol., 14: 33–44CrossRefGoogle Scholar
  8. Hansma, P., Schitter, G., Fantner, G., Prater, C. (2006): High speed atomic force microscopy. Science, 314: 601–602CrossRefGoogle Scholar
  9. Kuiper, S., Fleming, A., Schitter, G. (2010): Dual actuation for high speed atomic force microscopy. In: Proc. IFAC Mechatronics ConfGoogle Scholar
  10. Kuiper, S., Schitter, G. (2009): Self-Sensing Actuation and Damping of a Piezoelectric Tube Scanner for Atomic Force Microscopy. European Control Conf., 2009Google Scholar
  11. Kuiper, S., Schitter, G. (2010): Active damping of a piezoelectric tube scanner using self-sensing piezo actuation. Mechatronics, 20: 656–665CrossRefGoogle Scholar
  12. Kuiper, S., Schitter, G. (2011): Model-based feedback controller design for dual actuated atomic force microscopy. Mechatronics (in press)Google Scholar
  13. Picco, L., Bozec, L., Ulcinas, A., Engledew, D., Antognozzi, M., Horton, M., Miles, M. (2007): Breaking the speed limit with atomic force microscopy. Nanotechnology, 18 (044030): 4Google Scholar
  14. Rifai, O., Youcef-Toumi, K. (2001): Coupling in piezoelectric tube scanners used in scanning probe microscope. Proc. Amer. Control. Conf., 4: 3251–3255Google Scholar
  15. Salapaka, S., Sebastian, A., Cleveland, J., Salapaka, M. (2002): High bandwidth nano-positioner: a robust control approach. Rev. Sci. Instrum., 73: 3232CrossRefGoogle Scholar
  16. Sarid, D. (1994): Scanning force microscopy: with applications to electric, magnetic, and atomic forces. Oxford University Press, USAGoogle Scholar
  17. Schitter, G. (2009): Improving the Speed of AFM by Mechatronic Design and Modern Control Methods. Tech. Mess., 76 (5): 266–273CrossRefGoogle Scholar
  18. Schitter, G., Stemmer, A. (2004): Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy. IEEE Trans. Control Syst. Technol., 12: 449–454CrossRefGoogle Scholar
  19. Schroeck, S., Messner, W. (1999): On controller design for linear time-invariant dual-input singleoutput systems. Proc. Amer. Control Conf., vol. 6Google Scholar
  20. Sebastian, A., Salapaka, S. (2005): Design methodologies for robust nano-positioning. IEEE Trans. Control Syst. Technol., 13 (6): 868–876CrossRefGoogle Scholar
  21. Sulchek, T., Minne, S., Adams, J., Fletcher, D., Atalar, A., Quate, C., Adderton, D. (1999): Dual integrated actuators for extended range high speed atomic force microscopy. Appl. Phys. Lett., 75: 1637–1639CrossRefGoogle Scholar
  22. Tamer, N., Dahleh, M. (1994): Feedback control of piezoelectric tube scanners. In: Proc. 33rd IEEE Conf. Decis. Control, 2: 1826–1831Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. Steininger
    • 1
  • S. Kuiper
    • 2
  • S. Ito
    • 3
  • G. Schitter
    • 3
  1. 1.Institut für Automatisierungs- und RegelungstechnikTechnische Universität WienWienAustria
  2. 2.Delft University of TechnologyDelft Center for Systems and ControlDelftNetherlands
  3. 3.Technische Universität WienInstitut für Automatisierungs- und RegelungstechnikWienAustria

Personalised recommendations