Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 129, Issue 6, pp 387–399 | Cite as

Error concealment analysis for H.264/advanced video coding encoded video sequences

  • Luca Superiori
  • Olivia Nemethova
  • Markus Rupp
Originalarbeiten

Abstract

Error concealment methods have become very important in particular when transmitting video streams over error prone wireless links. Often a retransmission of corrupted sequences is not possible and thus the receiver has to make the best out of the received stream. The contributions of this article are the following: firstly, a performance comparison of various error concealment strategies (straight decoding, slice level concealment and macroblock level concealment) is presented based on the detection of errors, the exact location of which is unknown. Secondly, an analytical treatment of the slice level concealment, resulting in a precise mathematical model is provided. Finally, further improvements are proposed by subjective methods based on visual inspection and comparison of their performance by means of simulations.

Keywords

error concealment error detection syntax check subjective quality improvement 

Abbreviations and symbols

AVC

Advanced Video Coding

BER

Bit Error Ratio

CABAC

Context Adaptive Binary Arithmetic Coding

CAVLC

Context Adaptive Variable Length Coding

ecdf

empirical cumulative distribution function

FTP

File Transport Protocol

GOB

Groups Of Blocks

GOP

Group Of Picture

IDR

Instantaneous Decoding Refresh

IP

Internet Protocol

JM

Joint Model

JVT

Joint Video Team

LS

Least Squares

MB

MacroBlock

MBLC

MacroBlock Level Concealment

MSE

Mean Square Error

MTU

Maximum Transfer Unit

NAL

Network Abstraction Layer

NALU

Network Abstraction Layer Unit

PSS

Packet Switched Streaming

PSS

Packet Switched Services

QCIF

Quarter Common Intermediate Format

QP

Quantization Parameter

RTP

Real Time Protocol

SD

Straight Decoding

SLC

Slice Level Concealment

TCP

Transport Control Protocol

UDP

Universal Datagram Protocol

VCL

Video Coding Layer

Y-PSNR

Luminance Peak Signal to Noise Ratio

Fehlerverschleierungsanalyse in H264/Advanved Video Coding-codierten Videosequenzen

Zusammenfassung

Fehlerverschleierungsverfahren sind zurzeit von großem Interesse, insbesondere bei der Übertragung von Videos über fehlerbehaftete Funkstrecken. Meist ist eine Zweitübertragung einer fehlerbehafteten Sequenz nicht möglich, und der Empfänger muss das Beste aus den Empfängerdaten machen. In diesem Artikel präsentieren wir zunächst eine vergleichende Leistungsanalyse verschiedener Verschleierungsverfahren (direktes Dekodieren, Verschleierung auf Slice-Ebene und Verschleierung auf Makro-Ebene), basierend auf einer Fehlererkennung, dessen exakte Fehlerposition in der Sequenz allerdings unbekannt ist. Zweitens präsentieren wir eine analytische Behandlung der Verschleierung auf Slice-Ebene, die zu einem exakten mathematischen Modell führt. Schließlich schlagen wir weitere Verbesserungeen basierend auf subjektiven Verfahren der visuellen Inspektion vor und vergleichen ihre Leistungsfähigkeit anhand von Simulationen.

Schlüsselwörter

Fehlerverschleierung Fehlererkennung Syntaxüberprüfung subjektive Qualitätsverbesserung 

References

  1. I-T H.264 (2005): Series H: Audiovisual and multimedia systems, infrastructure of audiovisual services–coding of moving video, advanced video coding for generic audiovisual services. Tech. Rep. Google Scholar
  2. H.264/AVC JM Reference Software (2008): Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG. http://iphome.hhi.de/suehring/tml/.
  3. Barni M., Bartolini F., Bianco P. (2000): Performance of syntax-based error detection in H.263 video coding: a quantitative analysis. In Vasudev B., Hsing T. R., Tescher A. G., Stevenson R. L. (Eds.), Image and video communication and processing 2000, vol 3974, no. 1, pp 949–956. http://link.aip.org/link/?PSI/3974/949/1. Google Scholar
  4. Group A.-V. T. W., Schulzrinne H. (1996): RTP profile for audio and video conferences with minimal control. RFC 1890 (Proposed Standard), Internet Engineering Task Force, obsoleted by RFC 3551. http://www.ietf.org/rfc/rfc1890.txt.
  5. Group A.-V. T. W., Schulzrinne H., Casner S., Frederick R., Jacobson V. (1996): RTP: a transport protocol for real-time applications. RFC 1889 (Proposed Standard), Internet Engineering Task Force, obsoleted by RFC 3550. http://www.ietf.org/rfc/rfc1889.txt.
  6. Levine D., Lynch W., Le-Ngoc T. (2007): Observations on error detection in H.264. In 50th midwest symposium on circuits and systems, MWSCAS’2007, pp 815–818. doi: 10.1109/MWSCAS.2007.4488698. CrossRefGoogle Scholar
  7. Marpe D., Wiegand T., Sullivan G. (2006): The H.264/MPEG4 advanced video coding standard and its application. IEEE Commun. Mag. 44(8):134–143. http://iphome.hhi.de/wiegand/assets/pdfs/h264-AVC-Standard.pdf. CrossRefGoogle Scholar
  8. Nemethova O. (2009): Principles of video coding. In Rupp M. (Ed.), Video and multimedia transmissions over cellular networks: analysis, modelling and optimization in live 3G mobile networks, pp 126–158. Google Scholar
  9. Nemethova O., Al-Moghrabi A., Rupp M. (2006): An adaptive error concealment mechanism for H.264 encoded low-resolution video streaming. In Proceedings of 14th European signal processing conference (EUSIPCO), Florence, Italy. http://publik.tuwien.ac.at/files/pub-et_11103.pdf. Google Scholar
  10. Postel J. (1980): User datagram protocol. RFC 768 (Standard), IETF, Tech. Rep. 768. http://www.ietf.org/rfc/rfc768.txt.
  11. Postel J. (1981): Transmission control protocol. RFC 793 (Standard), IETF, Tech. Rep. 793, updated by RFCs 1122, 3168. http://www.ietf.org/rfc/rfc793.txt.
  12. Sabeva G., Jamaa S. B., Kieffer M., Duhamel P. (2006): Robust decoding of H.264 encoded video transmitted over wireless channels. In Proceedings of MMSP, pp 9–13. Google Scholar
  13. Stockhammer T., Hannuksela M., Wiegand T. (2003): H.264/AVC in wireless environments. IEEE Trans. Circuits Syst. Video Technol. 13(7):657–673. doi: 10.1109/TCSVT.2003.815167. CrossRefGoogle Scholar
  14. Sun M., Reibman A. (2003): Chapter 3: Error concealment. In Compressed video over networks, signal processing and communications series, pp 217–250. Google Scholar
  15. Superiori L., Nemethova O., Rupp M. (2006): Performance of a H.264/AVC error detection algorithm based on syntax analysis. In Proceedings of international conference on advances in mobile computing and multimedia (MoMM), Yogyakarta, Indonesian, pp 1–10. http://publik.tuwien.ac.at/files/pub-et_11446.pdf. Google Scholar
  16. Superiori L., Nemethova O., Rupp M. (2007a): Detection of visual impairments in the visual domain. In Picture coding symposium proceedings, Lissabon, Portugal. http://publik.tuwien.ac.at/files/pub-et_12809.pdf. Google Scholar
  17. Superiori L., Nemethova O., Rupp M. (2007b): Performance of a H.264/AVC error detection algorithm based on syntax check. J. Mob. Multimedia 3(4):314–330. http://publik.tuwien.ac.at/files/pub-et_12377.pdf. Google Scholar
  18. Superiori L., Weidmann C., Nemethova O. (2009): Error detection mechanisms for encoded video streams. In Rupp M. (Ed.), Video and multimedia transmissions over cellular networks: analysis, modelling and optimization in live 3G mobile networks, pp 112–118. Google Scholar
  19. Taferner M., Bonek E. (2002): Wireless Internet access over GSM and UMTS. Springer, Berlin. Google Scholar
  20. Wenger S. (2003): H.264/AVC over IP. IEEE Trans. Circuits Syst. Video Technol. 13(7):645–656. doi: 10.1109/TCSVT.2003.814966. CrossRefGoogle Scholar
  21. Wenger S., Hannuksela M., Stockhammer T., Westerlund M., Singer D. (2005): RTP payload format for H.264 video. RFC 3984 (Proposed Standard), IETF, Tech. Rep. 3984. http://www.ietf.org/rfc/rfc3984.txt.

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Institute of TelecommunicationsVienna University of TechnologyViennaAustria

Personalised recommendations