Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 128, Issue 7–8, pp 276–281 | Cite as

Funkkommunikation für intelligente Verkehrssysteme – Status und Ausblick

  • T. Zemen
  • N. Czink
  • L. Bernadó
  • C. Vogel
Originalarbeiten

Zusammenfassung

Dieser Beitrag gibt einen Überblick zur Funkkommunikation in intelligenten Verkehrssystemen (intelligent transport systems, ITS) und bietet einen Einblick in den IEEE 802.11p Standard. Die Ergebnisse umfangreicher Funkkanalmessungen von Fahrzeug zu Fahrzeug und von Fahrzeug zur Infrastruktur werden vorgestellt und die speziellen nicht stationären Eigenschaften des Schwundprozesses in der Fahrzeugkommunikation erklärt. Neben den Messungen werden numerische Simulationsergebnisse iterativer Kanalschätzmethoden für den Fahrzeugfunkkanal vorgestellt. Zusätzlich durchgeführte Übertragungsexperimente auf Österreichs Autobahnen zeigen den aktuellen Entwicklungsstand des IEEE 802.11p Standards. Basierend auf diesen Erkenntnissen gibt der Beitrag einen Ausblick auf mögliche Weiterentwicklungen des IEEE 802.11p Standards, um eine verlässliche Kommunikation in zukünftigen ITS zu gewährleisten.

Schlüsselwörter

Fahrzeugfunkkanal-Messungen und –Charakterisierung IEEE 802.11p Zeitvariante Kanalschätzung Übertragungsexperimente 

Wireless communications for intelligent transport systems – current status and outlook

Summary

This article provides an overview of the current status of wireless communication systems for intelligent transport systems (ITS) and gives an introduction to the IEEE 802.11p standard. We present results from channel sounding experiments between two vehicles and from the vehicle to the infrastructure. Specifically, the non-stationary properties of the fading process in vehicular communication channels are explained. Additionally, we also present numerical simulation results of iterative channel estimation algorithms for the vehicular communication channel. Transmission experiments carried out on Austrians motorways exemplify the challenges faced by the IEEE 802.11p standard. Based on these insights we give an outlook on the future development potential of the IEEE 802.11p standard, such that dependable communication can be guaranteed for ITS systems of the next generation.

Keywords

Vehicular channel measurements and characterization IEEE 802.11p Time-variant channel estimation Transmission experiments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Acosta-Marum, G., Ingram, M. A. (2007): Six time- and frequency- selective empirical channel models for vehicular wireless LANs. IEEE Veh. Technol. Mag. 2 (4): 4–11CrossRefGoogle Scholar
  2. Belanović, P., Valerio, D., Paier, A., Zemen, T., Ricciato, F., Mecklenbräuker, C. F. (2010): On wireless links for vehicle-to-infrastructure communications. IEEE Trans. Veh. Technol. 59 (1): 269–282CrossRefGoogle Scholar
  3. Bello, P. A. (1963): Characterization of randomly time-variant linear channels. IEEE Trans. Commun. 11: 360–393CrossRefGoogle Scholar
  4. Bernadó, L. Zemen, T., Karedal, J., Paier, A., Thiel, A., Klemp, O., Czink, N., Tufvesson, F., Molisch, A., Mecklenbräuker, C. F. (2010): Multi-dimensional k-factor analysis for V2V radio channels in open sub-urban street crossings. In: Proceedings of 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’10). Istanbul, TurkeyGoogle Scholar
  5. Bernadó, L., Roma, A., Czink, N., Karedal, J., Paier, A., Zemen, T. (2011): Cluster-based scatterer identification and characterization in vehicular channels. In: European Wireless Conference, April 27–29, 2011, Vienna, AustriaGoogle Scholar
  6. Bernadó, L., Roma, A., Zemen, T., Czink, N., Karedal, J., Paier, A., Thiel, A., Klemp, O., Tufvesson, F., Molisch, A. F., Mecklenbräuker, C. F. (2011): In-tunnel vehicular radio channel characterization. In: IEEE 73rd Vehicular Technology Conference, Budapest, HungaryGoogle Scholar
  7. Bernadó, L., Zemen, T., Paier, A., Karedal, J., Fleury, B. H. (2009): Parametrization of the local scattering function estimator for vehicular-to-vehicular channels. In: IEEE 70th Vehicular Technology Conference (VTC2009-Fall), Anchorage, Alaska, USAGoogle Scholar
  8. Bernadó, L., Zemen, T., Paier, A., Matz, G., Karedal, J., Czink, N., Dumard, C., Tufvesson, F., Hagenauer, M., Molisch, A. F., Mecklenbräuker, C. F. (2008): Non-WSSUS vehicular channel characterization at 5.2 GHz – spectral divergence and time-variant coherence parameters. In: Proceedings of the XXIXth URSI General Assembly, Chicago, Illinois, USAGoogle Scholar
  9. Bernadó, L., Zemen, T., Paier, A., Matz, G., Karedal, J., Czink, N., Dumard, C., Tufvesson, F., Hagenauer, M., Molisch, A. F., Mecklenbräuker, C. F. (2008): Non-WSSUS vehicular channel characterization at 5.2 GHz – spectral divergence and time-variant coherence parameters. In: Proc. XXIX General Assembly of the International Union of Radio Science (URSI), Chicago, Illinois, USAGoogle Scholar
  10. Cheng, L., Henty, B., Stancil, D., Bai, F., Mudalige, P. (2007): Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE J. Sel. Areas Commun. 25: 1501–1516CrossRefGoogle Scholar
  11. Commission decision on the harmonised use of radio spectrum in the 5875–5905 MHz frequency band for safety-related applications of intelligent transport systems (ITS). 2008/671/EC, August 2008Google Scholar
  12. CVIS, Cooperative Vehicle–Infrastructure Systems. http://www.cvisproject.org
  13. IEEE 802.11p: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 6: Wireless Access in Vehicular Environments. 15 July 2010Google Scholar
  14. Karedal, J., Tufvesson, F., Abbas, T., Klemp, O., Paier, A., Bernadó, L., Molisch, A. F. (2010): Radio channel measurements at street intersections for vehicle-to-vehicle safety applications. In: Proc. IEEE Veh. Technol. Conf. 2010 springGoogle Scholar
  15. Karedal, J., Tufvesson, F., Paier, A., Czink, N., Molisch, A. F. (2010): Four pathloss models for vehicle-to-vehicle communications. IEEE Trans. Veh. Technol. (submitted)Google Scholar
  16. Kunisch J., Pamp, J. (2008): Wideband car-to-car radio channel measurements and model at 5.9 GHz. In: Proc. IEEE Veh. Technol. Conf. 2008 fallGoogle Scholar
  17. Matz, G. (2005): On non-WSSUS wireless fading channels. IEEE Trans. Wireless Commun. 4 (5): 2465–2478MathSciNetCrossRefGoogle Scholar
  18. Matz, G., Molisch, A., Hlawatsch, F., Steinbauer, M., Gaspard, I. (2002): On the systematic measurement errors of correlative mobile radio channel sounders. IEEE Trans. Commun. 50 (5): 808–821CrossRefGoogle Scholar
  19. Mecklenbräuker, C. F., Molisch, A. F., Karedal, J., Tufvesson, F., Paier, A., Bernadó, L., Zemen, T., Klemp, O., Czink, N. (2011): Vehicular channel characterization and its implications for wireless system design and performance. Proc. IEEE 99 (7): 1189–1212CrossRefGoogle Scholar
  20. Molisch, A. F., Tufvesson, F., Karedal, J., Mecklenbräuker, C. F. (2009): A survey on vehicle-to-vehicle propagation channels. IEEE Wireless Commun. Mag. 16 (6): 12–22CrossRefGoogle Scholar
  21. Paier, A. (2010): The vehicular radio channel in the 5 GHz band. Ph.D. dissertation, Technische Universität Wien, AustriaGoogle Scholar
  22. Paier, A., Bernadó, L., Karedal, J., Klemp, O., Kwoczek, A. (2010): Overview of vehicle-to-vehicle radio channel measurements for collision avoidance applications. In: Proc. IEEE Veh. Technol. Conf. 2010 springGoogle Scholar
  23. Paier, A., Karedal, J., Czink, N., Dumard, C., Zemen, T., Tufvesson, F., Molisch, A., Mecklenbräuker, C. F. (2009): Characterization of vehicle-to-vehicle radio channels from measurements at 5.2 GHz. Wireless Personal Commun. 50: 19–29CrossRefGoogle Scholar
  24. Paier, A., Karedal, J., Czink, N., Hofstetter, H., Dumard, C., Zemen, T., Tufvesson, F., Molisch, A. F., Mecklenbräuker, C. F. (2007): Car-to-car radio channel measurements at 5 GHz: Pathloss, power-delay profile, and delay-doppler spectrum. In: Proc. Int. Symp. Wireless Commun. Syst. 224–228Google Scholar
  25. Paier, A., Tresch, R., Alonso, A., Smely, D., Meckel, P., Zhou, Y., Czink, N. (2010): Average downstream performance of measured IEEE 802.11p infrastructure-to-vehicle links. In: Proc. IEEE Int. Conf. Commun. Cape Town, South AfricaGoogle Scholar
  26. Paier, A., Zemen, T., Bernadó, L., Matz, G., Karedal, J., Czink, N., Dumard, C., Tufvesson, F., Molisch, A. F., Mecklenbräuker, C. F. (2008): Non-WSSUS vehicular channel characterization in highway and urban scenarios at 5.2 GHz using the local scattering function. In: Workshop on Smart Antennas (WSA), Darmstadt, GermanyGoogle Scholar
  27. Renaudin, O., Kolmonen, V. M., Vainikainen, P., Oestges, C. (2008): Wideband MIMO car-to-car radio channel measurements at 5.3 GHz. In: Proc. IEEE Veh. Technol. Conf. 2008 fallGoogle Scholar
  28. Rossi P. S., Müller, R. R. (2008): Slepian-based two-dimensional estimation of time-frequency variant MIMO-OFDM channels. IEEE Signal Process. Lett. 15: 21–24CrossRefGoogle Scholar
  29. Sen, I., Matolak, D. (2008): Vehicle–vehicle channel models for the 5-GHz band. IEEE Trans. Intell. Transp. Syst. 9 (2): 235–245CrossRefGoogle Scholar
  30. Wang, C.-X., Cheng, X., Laurenson, D. I. (2009): Vehicle-to-vehicle channel modeling and measurements: Recent advances and future challenges. IEEE Communications Magazine 47 (11): 96–103CrossRefGoogle Scholar
  31. Zemen T., Mecklenbräuker, C. F. (2005): Time-variant channel estimation using discrete prolate spheroidal sequences. IEEE Trans. Signal Process 53 (9): 3597–3607MathSciNetCrossRefGoogle Scholar
  32. Zemen, T., Bernado, L., Czink, N., Molisch, A. (2011): Iterative vehicular channel estimation for 802.11p using generalized discrete prolate spheroidal sequences. IEEE Trans. Veh. Technol. (in preparation)Google Scholar
  33. Zemen, T., Mecklenbräuker, C. F., Wehinger, J., Müller, R. R. (2006): Iterative joint time-variant channel estimation and multi-user detection for MC-CDMA. IEEE Trans. Wireless Commun. 5 (6): 1469–1478CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • T. Zemen
    • 1
  • N. Czink
    • 1
  • L. Bernadó
    • 1
  • C. Vogel
    • 1
  1. 1.FTW Forschungszentrum Telekommunikation WienWienAustria

Personalised recommendations