e & i Elektrotechnik und Informationstechnik

, Volume 126, Issue 1–2, pp 19–30 | Cite as

Utilisation of layered piezoelectric resonators for the online measurement of mass density and viscosity of fluids

  • S. Radel
  • E. Benes
Originalarbeit

Summary

For all processes in industry where liquids are intermediate or end products, there is a demand for online measurements of physical liquid properties, like density, viscosity and speed of sound. The continuous monitoring of those quantities is important for quality control and for enhancing productivity. In this paper layered resonant piezoelectric sensors for liquids are investigated and it is shown that they are advantageous because of their high resolution and accuracy and especially because of the analytically defined sensor function. The resonant sensor for liquids described in this paper is based on two bulk acoustic wave (BAW) piezoelectric plates with the liquid under investigation in between the vibrating plates. The density and the speed of sound sensors for liquids use BAW thickness extensional mode vibrators, while for the viscosity measurements BAW thickness shear resonators are used. In both cases sensor versions are available for low sample volumes of 250 µl and 130 µl, respectively. Further miniaturization of these sensor versions is feasible, which would allow their use also in microfluidic applications. For this sensor family a unique measurement electronics based on an electrical admittance measurement system has been developed. While the rather low accuracy currently obtained with the density sensors is still not competitive with established methods, the accuracy of monitoring the speed of sound and the viscosity with these resonant BAW sensors is already very close to, in some cases even better than, the accuracy obtained with more expensive offline laboratory measurement equipment.

Keywords

Resonant sensors Layered resonators Quartz crystal sensors BAW sensors Density sensors Speed of sound sensors Viscosity sensors Measurement electronics Admittance measurement 

Verwendung piezoelektrischer Resonatoren für die Online-Messung der Dichte und Viskosität von Flüssigkeiten

Zusammenfassung

Bei allen industriellen Prozessen, bei denen Flüssigkeiten als Zwischen- oder Endprodukte auftreten, besteht ein Bedarf an einer Online-Messung von physikalischen Flüssigkeitseigenschaften wie z. B. Dichte, Viskosität, Schallgeschwindigkeit. Die kontinuierliche Messung dieser Flüssigkeitsparameter ist für die Überwachung und Steuerung der Produktqualität sowie für die Verbesserung der Produktivität von Bedeutung. In diesem Beitrag wird über die Untersuchung von mehrschichtigen resonanten piezoelektrischen Sensoren für Flüssigkeiten berichtet, und es wird gezeigt, dass sich diese durch hohe Auflösung und Genauigkeit sowie insbesondere durch die analytisch definierte Sensorkennlinie auszeichnen. Der in dieser Arbeit beschriebene resonante Sensor für Flüssigkeiten basiert auf zwei piezoelektrischen Volumenresonatorscheiben, zwischen denen die zu messende Flüssigkeit eingeschlossen ist. Die Sensoren für die Dichte und die Schallgeschwindigkeit von Flüssigkeiten verwenden piezoelektrische Volumenresonatoren, die im extensionalen Dickenschwingungsmodus betrieben werden, während für die Viskositätsmessungen Dickenschwerschwinger eingesetzt werden. In beiden Fällen sind Versionen möglich, die mit sehr geringen Flüssigkeitsmengen von 250 μl bzw. 130 μl auskommen. Eine weitergehende Miniaturisierung ist möglich und würde den Einsatz in Mikrofluidik-Applikationen ermöglichen. Für diese Sensorfamilie wurde eine universelle Messelektronik entwickelt, die auf der Messung des elektrischen Admittanzverlaufs beruht. Während die mit dem Dichtesensor bisher erzielte Genauigkeit noch nicht konkurrenzfähig zu etablierten Methoden ist, ist die Genauigkeit der Schallgeschwindigkeits- und der Viskositätsmessung mit resonanten Volumenresonatoren bereits sehr nahe, in einigen Fällen sogar jener mit wesentlich teureren Labormessgeräten erreichbaren Genauigkeit überlegen.

Schlüsselwörter

Resonante Sensoren Schwingquarz-Sensoren Volumenresonatoren Mehrschichtige Resonatoren Dichtesensor Schallgeschwindigkeitssensor Viskositätssensor Messelektronik Admittanzmessung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auinger, A., Lucklum, F., et al. (2008): A measurement setup for sensing viscosity and mass density of liquids – accommodating different resonant sensor principles. Proc. Mikroelektroniktagung 2008, Vienna ( = OVE-Schriftenreihe 50): 164–168Google Scholar
  2. Beigelbeck, R., Jakoby, B. (2004): A two-dimensional analysis of spurious compressional wave excitation by thickness-shear-mode resonators. J. Appl. Phys., 95: 6CrossRefGoogle Scholar
  3. Benes, E. (1984): Improved quartz crystal microbalance technique. J. Appl. Phys., 56: 608–626CrossRefGoogle Scholar
  4. Benes, E., Gröschl, M. et al. (1998): Comparison between BAW and SAW sensor principles. IEEE Trans. Ultrason. Ferroelectric. Freq. Control, 45 (5): 1314–1330CrossRefGoogle Scholar
  5. Benes, E., Nowotny, H. et al. (1998): Piezoelectric resonant sensor for sound velocity of liquids. 16th Int. Congress on Acoustics and 135th Meeting Acoustical Society of America, Seattle, WA, USA, Acoustical Society of AmericaGoogle Scholar
  6. Benes, E., Schmid, M. et al. (1999): Solving the cable problem between crystal sensor and electronics by use of a balanced bridge oscillator circuit. EFTF 1999 – 13th European Frequency and Time Forum and IEEE Int. Frequency Control Symp. 1999, Besancon, FranceGoogle Scholar
  7. Benes, E., Schnitzer, R., et al. (2007): Viscosity sensor based on a biconvex quartz crystal thickness shear resonator in a novel stress-free holder. 3rd Congress of the Alps Adria Acoustics Association, Graz, AustriaGoogle Scholar
  8. Borngräber, R., Schröder, J., et al. (2002): Is an oscillator-based measurement adequate in a liquid environment? IEEE Trans. Ultrason. Ferroelectric. Freq. Control, 49 (9): 1254–1259CrossRefGoogle Scholar
  9. Eggers, F., Funck, T. (1987): Method for measurement of shear-wave impedance in the MHz region for liquid samples of 1ml. J. Phys. E. Sci. Instrum., 20: 523–530CrossRefGoogle Scholar
  10. Handbook of chemistry and physics (1981). Boca Raton, FL, USA: CRC PressGoogle Scholar
  11. Hauptmann, P., Lucklum, R., et al. (2003): Recent trends in bulk acoustic wave resonator sensors. IEEE Ultrasonics Symp. 2003, Honolulu, Hawaii, Ultrasonics, Ferroelectrics, and Frequency Control SocietyGoogle Scholar
  12. Jakoby, B., Scherer, M., et al. (2003): An automotive engine oil viscosity sensor. IEEE Sens. J., 3 (5): 562–568CrossRefGoogle Scholar
  13. Johannsmann, D., Mathauer, K., et al. (1992): Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys. Rev. B, Condens. Matter, 46 (12): 7808–7815Google Scholar
  14. Kanazawa, K. K., Gordon, J. G. (1985): The oscillation frequency of a quartz resonator in contact with a liquid. Anal. Chem. Acta, 175: 1295–1300Google Scholar
  15. Lin, Z., Ward, M. D. (1995): The role of longitudinal waves in quartz crystal microbalance applications in liquids. Anal. Chem., 67 (4): 685–693CrossRefGoogle Scholar
  16. Lucklum, R., Schranz, S., et al. (1997): Analysis of compressional-wave influence on thickness-shear-mode resonators in liquids. Sens. Act. A, 60 (1–3): 40–48CrossRefGoogle Scholar
  17. Martin, B. A., Hager, H. E. (1989): Flow profile above a quartz crystal vibrating in liquid. J. Appl. Phys., 65: 3Google Scholar
  18. Martin, F., Newton, M. I., et al. (2004): Pulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications. Biosens. Bioelect., 19 (6): 6Google Scholar
  19. Martin, S. J., Frye, G. C., et al. (1993): Effect of surface roughness on the response of thickness-shear mode resonators in liquids. Anal. Chem., 65 (20): 2910–2922CrossRefGoogle Scholar
  20. Martin, S. J., Frye, G. C., et al. (1994): Sensing liquid properties with thickness-shear mode resonators. Sens. Act. A, 44: 209–218CrossRefGoogle Scholar
  21. Martin, S. J., Granstaff, V. E., et al. (1991): Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem., 63 (20): 2272–2281CrossRefGoogle Scholar
  22. Nowotny, H., Benes, E. (1987): General one-dimensional treatment of the layered piezoelectric resonator with two electrodes. J. Acoust. Soc. Am., 82 (2): 513–521CrossRefGoogle Scholar
  23. Reed, C. E., Kanazawa, K. K., et al. (1990): Physical description of a viscoelastically loaded AT-cut quartz resonator. J. Appl. Phys., 68 (5): 1993–2001CrossRefGoogle Scholar
  24. Schaefer, R., Doerner, S., et al. (2004): Single board impedance analyzer and transient analysis of QCR sensor response. 2004 IEEE Int. Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conf.Google Scholar
  25. Schmid, M., Benes, E., et al. (1991): Motional capacitance of layered piezoelectric thickness-mode resonators. IEEE Trans. Ultrasoni. Ferroelectric. Freq. Control, 38 (3): 199–206CrossRefGoogle Scholar
  26. Schneider, T. W., Martin, S. J. (1995): Influence of compressional wave generation on thickness-shear mode resonator response in a fluid. Anal. Chem., 67 (18): 3324–3335CrossRefGoogle Scholar
  27. Schnitzer, R., Reiter, C., et al. (2006): A General-Purpose Online Measurement System for Resonant BAW Sensors. IEEE Sens. J., 6(5): 1314–1322CrossRefGoogle Scholar
  28. Thalhammer, R., Braun, S., et al. (1998): Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator. IEEE. Trans. Ultrasonic. Ferroelectric. Freq. Control, 45 (5): 1331–1340CrossRefGoogle Scholar
  29. Thalhammer, R., Braun, S., et al. (2003): Viscosity monitoring with a quartz crystal resonator. J. Elect. Eng., 54: 140–143Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Radel
    • 1
  • E. Benes
    • 2
  1. 1.Institute of Chemical Technology and AnalyticsVienna University of TechnologyWienAustria
  2. 2.Institute of General PhysicsVienna University of TechnologyWienAustria

Personalised recommendations