Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 125, Issue 10, pp 341–346 | Cite as

Wireless sensor network approach for robust localization of mobile nodes with minimal complexity

  • J. C. Fuentes Michel
  • M. Vossiek
Berichte

Summary

The actual paper introduces a concept for localization of mobile nodes in a wireless sensor network. The realized algorithms are characterized by minimal complexity and high robustness even in networks with scarce resources. The implementation on simple, low-power embedded systems is possible without difficulty. An application of the concept for vehicle tracking illustrates the very good performance of the approach.

Keywords

Wireless localization Parameter estimation Sequential Monte Carlo Method 

Drahtloses Sensornetzwerk zur robusten Lokalisierung von mobilen Knoten mit minimaler Komplexität

Zusammenfassung

Der vorliegende Artikel beschreibt ein Konzept zur Lokalisierungen von Netzwerkknoten in einem drahtlosen Sensornetzwerk. Die realisierten Ortungsalgorithmen zeichnen sich durch geringen Rechenaufwand und große Robustheit auch bei dünn besetzten Netzwerken aus. Eine Umsetzung auf einfachen, stromsparenden eingebetteten Systemen ist problemlos möglich. Die Performanz des Verfahrens wird anhand eines Systems zur Fahrzeugortung demonstriert.

Schlüsselwörter

Funkortung Sensornetzwerk Lokalisierung Parameter-Schätzung Sequenzielle Monte-Carlo-Methode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali-Löytty, S., Sirola, N., et al. (2005): Consistency of Three Kalman Filter Extensions in Hybrid NavigationGoogle Scholar
  2. Aloi, D. N., Alsliety, M., et al. (2007): A methodology for the evaluation of a GPS receiver performance in telematics application. IEEE Transactions on Instrumentation and Measurement 56 (1): 11–25CrossRefGoogle Scholar
  3. Bizup, D. F., Brown, D. E. (2003). The Over-Extended Kalman Filter – Don't Use It! Proc. of the 6th Int. Conf. of Information Fusion, Vol. 1: 40–46Google Scholar
  4. Boukerche, A., Oliveira, H. A., et al. (2008). Vehicular ad hoc networks: a new challenge for localization-based systems. Computer Communications. doi: 10.1016/j.comcom.2007.12.004, ElsevierGoogle Scholar
  5. Caffrey, J. J., Stüber, G. L. (1998): Overview of radiolocation in CDMA cellular systems. IEEE Communications Magazine: 38–45Google Scholar
  6. Fuentes, J. C., Christmann, M., et al. (2006) Multisensor based indoor vehicle localization system for production and logistic. Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems. Heidelberg: 553–558Google Scholar
  7. Fuentes, J. C., Millner, H., et al. (2008) A novell wireless forklift positioning system for indoor and outdoor use. Proc. of the 5th Workshop on Positioning, Navigation and Communication 2008 (WPNC'08), Hannover: 219–227Google Scholar
  8. Hähnel, D., Burgard, W., et al. (2003) Mapping and Localization with RFID TechnologyGoogle Scholar
  9. Hall, D. James, L. (2001): Handbook of multisensor data fusion. Boca Raton, Florida: CRC PressGoogle Scholar
  10. Hightower, J., Borriello, G. (2001): Location systems for ubiquitous computing. IEEE Computer Magazine: 57–66Google Scholar
  11. Kalman, R. E. (1960): A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering 82: 35–45Google Scholar
  12. Kay, S. M. (1993) Fundamentals of Statistical Signal Processing: Estimation Theory. P. HallGoogle Scholar
  13. Kelly, A. (2003): Precision Dilution in Triangulation Based Mobile Robot Position Estimation. Intelligent Autonomous Systems. Amsterdam, Robotics Institute, Carnegie Mellon UniversityGoogle Scholar
  14. Kurth, D. (2004): Range-Only Robot Localization and SLAM with Radio. Robotics Institute, Pittsburg, Carnegie Mellon: 60Google Scholar
  15. Max, S., Vossiek, M., et al. (2008): Verfahren zur Integration von lokaler Funkortung und Inertialsensorik zur Objektverfolgung innerhalb Gebäuden. 14. GMA/ITG-Fachtagung Sensoren und Messsysteme. LudwigsburgGoogle Scholar
  16. Ng, G. W. (2003): Intelligent Systems: Fusion, Tracking and Control. England, Research Studies Press LtdGoogle Scholar
  17. Pahlavan, K., Li, X., et al. (2002): Indoor geolocation science and technology. IEEE Communications Magazine: 112–118Google Scholar
  18. Röhr, S., Vossiek, M., et al. (2007a): Method for high precision clock synchronization in wireless systems with application to radio navigation. IEEE Radio Wireless Symp. Long Beach, USA: 551–554Google Scholar
  19. Röhr, S., Vossiek, M., et al. (2007b): Method for high precision radar distance measurement and synchronization of wireless units. IEEE MTT-S Int. Microwave Symp. Honolulu, Hawaii: 1315–1318Google Scholar
  20. Stoleru, R., He, T., et al. (2004) Walking GPS: a practical solution for localization in manually deployed wireless sensor networks. Proc. of the 29th Annual IEEE Int. Conf. on Local Computer Networks (LCN'04): 480–489Google Scholar
  21. Vossiek, M., Wiebking, L., et al. (2003): Wireless local positioning. IEEE Microwave Magazine. Radio & Wireless Conference 4: 77–86Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. C. Fuentes Michel
    • 1
  • M. Vossiek
    • 1
  1. 1.Institute of Electrical Information TechnologyClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations