Advertisement

Zur Kombination von differenzieller Flachheit und Backstepping für die Trajektorienfolgeregelung eines Diffusions-Konvektions-Reaktionssystems

  • T. Meurer
  • A. Kugi
Originalarbeit

Zusammenfassung

In diesem Beitrag wird die Kombination von flachheitsbasierten Methoden zur Trajektorienplanung und zum Steuerungsentwurf mit einer Backstepping-ähnlichen Methodik zum Entwurf einer Trajektorienfolgeregelung für ein semilineares Diffusions-Konvektions-Reaktionssystem (DKRS) mit kubischem Reaktionsterm vorgestellt. Das betrachtete Trajektorienfolgeproblem umfasst hierbei die Realisierung eines Arbeitspunktwechsels von einem stationären Anfangsprofil zu einem gewünschten stationären Endprofil innerhalb eines vorgegebenen Zeitintervalls entlang einer geeignet geplanten Solltrajektorie für die Ausgangsgröße. Anhand von Simulationsszenarien werden die Anwendbarkeit dieses Ansatzes und die erzielbare Regelgüte diskutiert.

Schlüsselwörter

Differenzielle Flachheit Backstepping Trajektorienfolgeregelung Trajektorienplanung Steuerungsentwurf Stabilisierung Verteilt-parametrisches System Diffusions-Konvektions-Reaktionssystem 

On the combination of differential flatness and backstepping for the tracking control of a diffusion-convection-reaction system

Summary

The combination of flatness-based feedforward control and backstepping state feedback control is considered for the solution of a tracking control problem for a boundary controlled diffusion-convection-reaction system with cubic nonlinearity. The control task thereby concerns the realization of a finite-time transition from an initial operating profile to a final operating profile along a desired output trajectory. Besides the theoretical analysis, the tracking performance of the closed-loop distributed-parameter system is evaluated in simulation studies, which confirm the applicability of the proposed approach.

Keywords

Differential flatness Backstepping Tracking control Trajectory planning Feedforward control Stabilization Distributed-parameter system Diffusion-convection-reaction system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Antonov, S., Fehn, A., Kugi, A. (2008): A new flatness-based control of lateral vehicle dynamics. Vehicle System Dynamics. Im Druck.Google Scholar
  2. Balas, M. J. (1978): Modal control of certain flexible dynamic systems. SIAM J Control Optim, 16 (3): 450–462.CrossRefMathSciNetGoogle Scholar
  3. Balser, W. (1994): From Divergent Power Series to Analytic Functions. Springer.Google Scholar
  4. Balser, W. (2000): Formal power series and linear systems of meromorphic ordinary differential equations. Springer.Google Scholar
  5. Balser, W., Kostov, V. (2003): Recent progress in the theory of formal solutions for ODE and PDE. Appl Math Comput, 141: 113–123.CrossRefMathSciNetGoogle Scholar
  6. Christofides, P. D. (2001): Nonlinear and Robust Control of PDE Systems. Birkhäuser.Google Scholar
  7. Colton, D. (1977): The Solution of Initial-Boundary Value Problems for Parabolic Equations by the Method of Integral Operators. J Diff Eqns. 26: 181–190.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Corriou, J.-P. (2004): Process Control – Theory and Applications. London: Springer.Google Scholar
  9. Curtain, R. F., Zwart, H. J. (1995): An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics 21. New York: Springer.zbMATHGoogle Scholar
  10. Fliess, M., Lévine, J., Martin, P., Rouchon, P. (1992): On differentially flat nonlinear systems. In: Fliess M. (ed.) Nonlinear Control Systems Design: 408–412.Google Scholar
  11. Fliess, M., Lévine, J., Martin, P., Rouchon, P. (1995): Flatness and defect of non-linear systems: introductory theory and examples. Int J Control, 61: 1327–1361.zbMATHCrossRefGoogle Scholar
  12. Fliess, M., Mounier, H., Rouchon, P., Rudolph, J. (1997): Systèmes linéaires sur les opérateurs de Mikusinski et commande d'une poutre flexible. ESAIM Proc, 2: 183–193.zbMATHMathSciNetCrossRefGoogle Scholar
  13. Fliess, M., Mounier, H., Rouchon, P., Rudolph, J. (1998): A distributed parameter approach to the control of a tubular reactor: a multi-variable case. In: Proc. 37th Conf. on Decision and Control, Tampa, FL, USA: 439–442.Google Scholar
  14. Fuchshumer, F., Kemmetmüller, W., Kugi, A. (2007): Nichtlineare Regelung von verstellbaren eigenversorgten Axialkolbenpumpen. at – Automatisierungstechnik, 2: 58–68.CrossRefGoogle Scholar
  15. Fuchshumer, S., Schlacher, K., Rittenschober, T. (2005): Ein Beitrag zur nichtlinearen Fahrdynamikregelung: die differentielle Flachheit des Einspurmodells. e&i 122, H. 9: 319f.Google Scholar
  16. Georgakis, C., Aris, R., Amundson, N. R. (1977): Studies in the control of tubular reactors – I, II, III. Chem Eng Sci, 32: 1359–1387.CrossRefGoogle Scholar
  17. Kemmetmüller, W., Müller, S., Kugi, A. (2007): Mathematical Modeling and Nonlinear Controller Design for a Novel Electrohydraulic Power-Steering System. IEEE/ASME Trans Mechatronics, 12 (1): 85–97.CrossRefGoogle Scholar
  18. Kugi, A., Thull, D. (2005): Infinite-Dimensional Decoupling Control of the Tip Position and the Tip Angle of a Composite Piezoelectric Beam with Tip Mass. In: Meurer T. et al. (Eds.). Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, Bd 322 der LNCIS. Berlin, Springer: 351–368.CrossRefGoogle Scholar
  19. Laroche, B., Martin, P., Rouchon, P. (2000): Motion planning for the heat equation. Int J Robust Nonlinear Control, 10: 629–643.zbMATHCrossRefMathSciNetGoogle Scholar
  20. Luo, Z. H., Guo, B. Z., Morgül, O. (1999): Stability and Stabilization of Infinite Dimensional Systems with Applications. London: Springer.zbMATHGoogle Scholar
  21. Lynch, A. F., Rudolph, J. (2000): Flachheitsbasierte Randsteuerung parabolischer Systeme mit verteilten Parametern. at – Automatisierungstechnik, 48 (10): 478–486.CrossRefGoogle Scholar
  22. Lynch, A. F., Rudolph, J. (2002): Flatness-based boundary control of a class of quasilinear parabolic distributed parameter systems. Int J Control, 75 (15): 1219–1230.zbMATHCrossRefMathSciNetGoogle Scholar
  23. Meurer, T. (2005): Feedforward and Feedback Tracking Control of Diffusion-Convection-Reaction Systems using Summability Methods. Fortschr.-Ber. VDI Reihe 8 Nr. 1081. Düsseldorf: VDI-Verlag.Google Scholar
  24. Meurer, T., Thull, D., Kugi, A. (2007): Flatness-based tracking control of a piezoactuated Euler-Bernoulli beam with non-collocated output feedback: theory and experiments. Int J Control. 81 (3): 473–491.MathSciNetGoogle Scholar
  25. Meurer, T., Zeitz, M. (2004): Two-degree-of-freedom tracking control design for boundary controlled distributed parameter systems using formal power series. In: Proc. (CD-Rom) 43rd IEEE-CDC, Bahamas, Dec. 14–17: 3307–3312.Google Scholar
  26. Meurer, T., Zeitz, M. (2005): Feedforward and feedback tracking control of nonlinear diffusion-convection-reaction systems using summability methods. Ind Eng Chem Res, 44: 2532–2548.CrossRefGoogle Scholar
  27. Petit, N., Rouchon, P., Boueilh, J.-M., Guérin, F., Pinvidic, P. (2002): Control of an industrial polymerization reactor using flatness. J Proc Contr, 12 (5): 659–665.CrossRefGoogle Scholar
  28. Ray, W. H. (1981): Advanced Process Control. McGraw-Hill.Google Scholar
  29. Rothfuß, R., Rudolph, J., Zeitz, M. (1996): Flatness-based control of a nonlinear chemical reactor model. Automatica, 32: 1433–1439.zbMATHCrossRefGoogle Scholar
  30. Rudolph, J. (2003): Beiträge zur flachheitsbasierten Folgeregelung linearer und nichtlinearer Systeme endlicher und unendlicher Dimension. Berichte aus der Steuerungs- und Regelungstechnik. Aachen: Shaker-Verlag.Google Scholar
  31. Sira-Ramirez, H., Agrawal, S. K. (2004): Differentially Flat Systems. Marcel Dekker Inc.Google Scholar
  32. Smyshlyaev, A., Krstic, M. (2005a): Backstepping observers for a class of parabolic PDEs. Systems & Control Letters, 54: 613–625.zbMATHCrossRefMathSciNetGoogle Scholar
  33. Smyshlyaev, A., Krstic, M. (2005b): On control design for PDEs with space-dependent diffusivity or time-dependent reactivity. Automatica, 41: 1601–1608.zbMATHCrossRefGoogle Scholar
  34. Vazquez, R., Krstic, M. (2004): Volterra boundary control laws for a class of nonlinear parabolic partial differential equations. In: Proc. 6th IFAC Symp. "Nonlinear Control Systems" (NOLCOS 2004), Stuttgart, Germany: 399–404.Google Scholar
  35. Woittennek, F. (2007): Beiträge zum Steuerungsentwurf für lineare, örtlich verteilte Systeme mit konzentrierten Stelleingriffen. Aachen: Shaker-Verlag.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • T. Meurer
    • 1
  • A. Kugi
    • 1
  1. 1.Institut für Automatisierungs- und RegelungstechnikTechnische Universität WienWienAustria

Personalised recommendations