Tomografie eines Quantenzustands – Verschränkung und Reinheit

  • O. Gühne
  • H. Häffner
Originalarbeit

Zusammenfassung

Es wird die experimentelle Herstellung und Quantenzustandstomografie eines Acht-Teilchen-verschränkten Zustands in einem Ionenfallenquantencomputer diskutiert. Die so gewonnene vollständige quantenmechanische Beschreibung des Zustands dient nun weiteren Untersuchungen. Insbesondere werden Güte und Reinheit des komplexen Zustands berechnet. Darüber hinaus wird nachgewiesen, dass der Zustand verschränkt ist.

Schlüsselwörter

Verschränkung Quanteninformation Ionenfallen 

Quantum state tomography – entanglement and purity

Summary

We discuss the experimental generation and quantum state tomography of an entangled state of eight trapped ions. Based on the complete description of the complex quantum state in terms of the density matrix, we analyze its fidelity and purity. Furthermore, we show that this state carries genuine eight particle entanglement.

Keywords

Entanglement Quantum information Ion traps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bourennane, M., Eibl, M., Kurtsiefer, C., Gaertner, S., Weinfurter, H., Gühne, O., Hyllus, P., Bruß, D., Lewenstein, M., Sanpera, A. (2004): Experimental detection of multipartite entanglement using witness operators. Physical Review Letters 92: 087902.CrossRefGoogle Scholar
  2. Cirac, J. I., Zoller, P. (1995): Quantum computation with cold trapped ions. Physical Review Letters 74: 4091.CrossRefGoogle Scholar
  3. Davisson, C., Germer, L. H. (1927): Diffraction of electrons by a crystal of nickel. Physical Review 30: 705.CrossRefGoogle Scholar
  4. De Broglie, L. (1924): Recherches sur la théorie des quanta. Thèse. Paris.Google Scholar
  5. Diedrich, F., Bergquist, J. C., Itano, W. M., Wineland, D. J. (1989): Laser cooling to the zero point energy of motion. Physical Review Letters 62: 403–406.CrossRefGoogle Scholar
  6. Dür, W., Vidal, G., Cirac, J. I. (2000): Three qubits can be entangled in two inequivalent ways. Physical Review A 62: 062314.CrossRefMathSciNetGoogle Scholar
  7. Gulde, S., Rotter, D., Barton, P., Schmidt-Kaler, F., Blatt, R., Hogervorst, W. (2001): Simple and efficient photoionization loading of ions for precision ion-trapping experiments. Applied Physics B 73: 861.CrossRefGoogle Scholar
  8. Häffner, H., Hänsel, W., Roos, C. F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Körber, T., Rapol, U. D., Riebe, M., Schmidt, P. O., Becher, C., Gühne, O., Dür, W., Blatt, R. (2005): Scalable multiparticle entanglement of trapped ions. Nature 438: 643.CrossRefGoogle Scholar
  9. Hradil, Z., Rehacek, J., Fiurasek, J., Jezek, M. (2004): Maximum-likelihood methods in quantum mechanics. Lecture Notes in Physics 649: 59–112.MathSciNetGoogle Scholar
  10. Kjaergaard, N., Hornekaer, L., Thommesen, A. M., Videsen, Z., Drewsen, M. (2000): Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization. Applied Physics B 71: 207.Google Scholar
  11. Nielsen, M., Chuang, I. (2000): Quantum computation and quantum information. New York: Cambridge Univ. Press.MATHGoogle Scholar
  12. Paul, W. (1990): Electromagnetic traps for charged and neutral particles. Review of Modern Physics 62: 531.CrossRefGoogle Scholar
  13. Paul, W., Osberghaus, O., Fischer, E. (1958): Forschungsber. Wirtsch.-Verkehrminist. Nordrhein-Westfalen: 415.Google Scholar
  14. Peres, A. (1995): Quantum theory – concepts and methods. Dordrecht: Kluwer Academic Publishers.MATHGoogle Scholar
  15. Raizen, M. G., Gilligan, J. M., Bergquist, J. C., Itano, W. M., Wineland, D. J. (1992): Ionic crystals in a linear Paul trap. Physical Review A 45: 6493–6501.CrossRefGoogle Scholar
  16. Roos, C. F., Lancaster, G. P. T., Riebe, M., Häffner, H., Hänsel, W., Gulde, S., Becher, C., Eschner, J., Schmidt-Kaler, F., Blatt, R. (2004b): Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Physical Review Letters 92: 220402.CrossRefGoogle Scholar
  17. Roos, C. F., Riebe, M., Häffner, H., Hänsel, W., Benhelm, J., Lancaster, G. P. T., Becher, C., Schmidt-Kaler, F., Blatt, R. (2004a): Control and measurement of three-qubit entangled states. Science 304: 1478.CrossRefGoogle Scholar
  18. Schmidt-Kaler, F., Häffner, H., Gulde, S., Riebe, M., Lancaster, G. P. T., Deuschle, T., Becher, C., Hänsel, W., Eschner, J., Roos, C. F., Blatt, R. (2003): How to realize a universal quantum gate with trapped ions. Applied Physics B 77: 789.CrossRefGoogle Scholar
  19. Schrödinger, E. (1935): Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23: 807–812, 823–828, 844–849.Google Scholar
  20. Werner, R. F. (1989): Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Physical Review A 40: 4277.CrossRefGoogle Scholar
  21. White, A. G., James, D. F. V., Eberhard, P. H., Kwiat, P. G. (1999): Nonmaximally entangled states: production, characterization, and utilization. Physical Review Letters 83: 3103.CrossRefGoogle Scholar
  22. Wineland, D. J., Drullinger, R. E., Walls, F. L. (1978): Radiation-pressure cooling of bound resonant absorbers. Physical Review Letters 40: 1639–1642.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • O. Gühne
    • 1
  • H. Häffner
    • 1
  1. 1.Institut für Quantenoptik und QuanteninformationÖsterreichische Akademie der WissenschaftenInnsbruckAustria

Personalised recommendations