Real-time and Contactless Mold Thermal Monitoring: Improving Metallurgy, Quality and Productivity of Billets and Blooms

  • I. MazzaEmail author
  • S. Miani
  • G. Schiavon
  • S. Spagnul


Today the mold thermal mapping technology is typically applied to the CCMs for slabs with solutions based on the installation of thermocouples (TC) or optical fibre cables (OFC), inserted into channels machined in the plate molds. The final installation is complex, since every single mold must be machined and the quantity of cables is considerable, making every mold change a complex and time-consuming activity. Extending TC or OFC application to billets and blooms would require invasive and expensive CNC machining of the curved mold tubes.

In order to overcome these limits, Ergolines designed a new system based on contactless ultrasound technology which provides the real-time mold thermal map without the need to machine the copper, offering a new reliable tool also to the CCMs for small sections. By providing real-time data of the thermal distribution of the mold, Ergolines’ system can be fruitfully used by the technical personnel to improve the casting practice, the steel quality and the plant productivity.


Initial solidification Stainless steel solidification Mold thermal mapping Breakout prevention Mold powder feeding control Ultrasonic sensor 

Echtzeit- und kontaktlose thermale Überwachung des Kokillenrohrs: Verbesserung der Metallurgie, Qualität und Produktivität von Knüppeln


Heutzutage wird die Thermale Überwachung des Kokillenrohrs normalerweise auf das Brammenstranggießen angewandt, um die Wärmeübertragung durch Kupfer mit Thermoelementen oder Optical Fibre Cables (OFC) zu überwachen. Diese Sonde wird gewöhnlich im Kupferkokillenrohr durch teure maschinelle Bearbeitung installiert. Die Installation ist ziemlich kompliziert und zeitintensiv. Aus diesem Grund wäre eine unpraktische, teure Bearbeitung des Kupfers notwendig, um Thermoelemente oder OFC für die Knüppel zu verwenden. Ergolines hat einen neuen Ultraschall-Sensor entwickelt, der keine Bearbeitung des Kupferkokillenrohrs braucht: Durch diese Technologie ist es jetzt möglich, die thermale Überwachung des Kokillenrohrs in Echtzeit kontaktlos zu überwachen. Die Echtzeit-Daten von Ergolines Ultraschall-Sensor liefern wichtige Informationen über die Kupferwärmeübertragung, die sehr nützlich für die Verbesserung der Metallurgie, der Qualität und der Produktivität sind.


Stahlerstarrung Thermale Überwachung des Kokillenrohrs Breakout-Vorbeugung Kokillenrohr-Pulver-Überwachung Ultraschallsensor 



  1. 1.
    Thomas, B. G.: Modelling of Continuous-Casting Defects Related to Mold Fluid Flow, 3rd Internat. Congress on Science & Technology of Steelmaking, Charlotte, NC, AIST, Warrendale, PA, 2005Google Scholar
  2. 2.
    Thomas, B. G.: On-line detection of quality problems in continuous casting of steel. Modelling, Control and Optimization in Ferrous and Nonferrous Industry, Chicago, IL, TMS, Warrendale, PA, 2003.Google Scholar
  3. 3.
    Lait, J. E.; Brimacombe, J. K.: Solidification During Continuous Casting of Steel, Continuous Casting, 2 (1984), p. 171Google Scholar
  4. 4.
    Emi, T.; Surface Defects on Continuously Cast Strands, The AISE Steel Foundation, Pittsburgh, PA, Ch. 21, 2003, p. 1, 2009Google Scholar
  5. 5.
    Ecke, W.: Applications of Fibre Bragg Grating Sensors, IPHT Jena, The 19th International Conference on Optical Fibre Sensors, Perth, 2008Google Scholar
  6. 6.
    Mazza, I.; Miani, S.; Schiavon, G.; Spagnul, S.: Contactless Mold Thermal Mapping at Meniscus through an Innovative Ultrasonic Sensor, Proceedings of ICS 2018, Venice, Italy, 13–15 June 2018, 2018Google Scholar
  7. 7.
    Brimacombe, J. K.; Kumar, S.; Hlady, C. O.; The continuous casting of stainless steels; Infacon 6, Johannesburg, 1992Google Scholar
  8. 8.
    Camisani, F. R.; Craig, I. K.; Pistorius, P. C.: Defect and mould variable prediction in continuous casting; SAIMM, 2003Google Scholar
  9. 9.
    Olivo, L.; Spagnul, S.; Mazza, I.: A New Optical System for Mold Powder Thickness Control by Laser Scanning and Multi-Spectral Imaging, Iron & Steel Technology, Vol. 13 (2016), no. 12, pp. 62–69Google Scholar
  10. 10.
    Mazza, I.; Spagnul, S.: A Novel Ultrasonic Sensor for Mold Powder Thickness Control, Proceedings of METEC 2015, Düsseldorf, Germany, 2015Google Scholar
  11. 11.
    Spagnul, S.; Olivo, L.; Schiavon, G.; Mazza, I.: A Compact Mold Powder DiffuserWith Built-In Optical Powder Thickness Measurement, Iron and Steel Technology, Vol. 14 (2017), no. 12, pp. 64–70Google Scholar
  12. 12.
    Mazza, I.; Spagnul, S.; Olivo, L.; Milani, F.: 2017, Review of Technologies and Methods for Mold Powder Thickness Control, No. 4, La Metallurgia Italiana, 4 (2017), pp. 29–36Google Scholar
  13. 13.
    Spagnul, S.; Olivo, L.; Schiavon, G.; Mazza, I.: A New Instrumented Mold Powder Diffuser with Built-in Optical Sensor for Powder Thickness Control, Proceedings of ECCC 2017, Vienna, Austria, 26–29 June 2017, 2017Google Scholar
  14. 14.
    Mazza, I.; Spagnul, S.; Mantovani, F: Review of the Mold Powder Control Technology, Proceedings of METEC 2015, Düsseldorf, Germany, 2015Google Scholar
  15. 15.
    Spagnul, S.; Padovan, M.; Bianco, A.; Mantovani, F.: Latest Enhancements in Mold Powder Thickness Control as a Result of a New Propulsion System Implemented in Flux Feeding, Proceedings of ECCC 2014, Graz, Austria, 2014Google Scholar
  16. 16.
    Spagnul, S.; Mantovani, F.: A Reliable Powder Control based on an Automatic Closed Loop System including Measurement, Powder Feeding and Powder Thickness Control, Proceedings of METEC 2011, Düsseldorf, Germany, 2011Google Scholar

Copyright information

© Austrian Society for Metallurgy of Metals (ASMET) and Bergmännischer Verband Österreich (BVÖ) 2020

Authors and Affiliations

  1. 1.Area Science Park, Bldg. R3ERGOLINES LAB s.r.lTriesteItaly

Personalised recommendations