BHM Berg- und Hüttenmännische Monatshefte

, Volume 153, Issue 7, pp 257–262 | Cite as

Testing Thin Films by Microcompression: Benefits and Limits

  • H. Wörgötter
  • D. Kiener
  • J.M. Purswani
  • D. Gall
  • G. Dehm
Originalartikel

Summary

Coatings are very important for numerous industrial applications such as increasing the wear resistance of tools, providing thermal conductivity to components in engines or electric conductivity in microelectronic devices. The mechanical properties of the coatings are of prime concern. The practicability of performing miniaturized compression tests in order to determine mechanical properties of various thin films was analysed. Four coatings, a polycrystalline tungsten coating, a single crystal copper coating and two single crystal hard coatings (vanadium nitride and titanium nitride) were tested. The compression samples were fabricated using a focused ion beam microscope. The compression tests were executed with a micro-indenter installed in a scanning electron microscope. The deformation of the sample was observed and in-situ recorded by scanning electron microscopy. From the measured load-displacement data true stress-true strain curves were calculated. The limits and benefits of the microcompression technique are discussed.

Durchführung von Mikro-Druckversuchen an dünnen Schichten: Vor- und Nachteile

Zusammenfassung

Hochwertige Werkzeuge werden beschichtet, um sie einerseits verschleißbeständiger zu machen und um andererseits die benötigten Werkstoffeigenschaften für das jeweilige Einsatzgebiet zu erhalten. Ähnliche Optimierungsstrategien werden z. B. bei thermischen Schutzschichten für Turbinenschaufeln oder elektrisch leitfähigen Schichten in der Mikroelektronik verfolgt. Für die Anwendungen ist es notwendig, die mechanischen Eigenschaften der jeweiligen Schicht zu kennen. Es werden die Durchführbarkeit von Mikro-Druckversuchen an vier verschiedenen Beschichtungen, an einer polykristallinen Wolframschicht, an einer einkristallinen Kupferschicht und an zwei einkristallinen Hartstoffschichten (Vanadiumnitrid und Titannitrid) analysiert und die Vor- und Nachteile der Methode diskutiert. Mit Hilfe eines Rasterionenmikroskops wurden kleine Druckproben aus den jeweiligen Schichten gefertigt und anschließend mit einem Mikro-Indenter, welcher in ein Rasterelektronenmikroskop eingebaut wurde, geprüft. Die Verformung der Druckproben wurde während des Druckversuches beobachtet und aus den aufgezeichneten Kraft-Verschiebungswerten wurden wahre Spannungs- wahre Dehnungskurven berechnet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oliver, W.C., and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mat. Res. 7 (1992), 1564–1583CrossRefGoogle Scholar
  2. Uchic, M.D., D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305 (2004), 986–989CrossRefGoogle Scholar
  3. Uchic, M.D., and D.M. Dimiduk: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mat. Sci. Eng. A 400–401 (2005), 268–278CrossRefGoogle Scholar
  4. Frick, C.P., S. Orso, and E. Arzt: Loss of pseudoelasticity in nickel-titanium submicron compression pillars. Acta Mat. 55 (2007), 3845–3855CrossRefGoogle Scholar
  5. Greer, J.R., W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mat. 53 (2005), 1821–1830CrossRefGoogle Scholar
  6. Volkert, C.A., and E.T. Lilleodden: Size effects in the deformation of submicron Au columns. Phil. Mag. 86 (2006), 5567–5579CrossRefGoogle Scholar
  7. Kiener, D., C. Motz, T. Schöberl, M. Jenko, and G. Dehm: Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mat. 8 (2006), 1119–1125CrossRefGoogle Scholar
  8. Kutschej, K., B. Rashkova, J. Shen, D. Edwards, C. Mitterer, and G. Dehm: Experimental studies on epitaxially grown TiN and VN films. Thin Solid Films 516 (2007), 369–373CrossRefGoogle Scholar
  9. Purswani, J.M., T. Spila, and D. Gall: Growth of epitaxial Cu on MgO(001) by magnetron sputter deposition. Thin Solid Films 515 (2006), 1166–1170CrossRefGoogle Scholar
  10. Kiener, D., C. Motz, M. Rester, M. Jenko, and G. Dehm: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mat. Sci. Eng. A 459 (2007), 262–272CrossRefGoogle Scholar
  11. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3 (1965), 47–57CrossRefGoogle Scholar
  12. Landolt Börnstein: Numerical Data and Functional Relationships in Science and Technology Crystal and Solid State Physics. Springer Verlag, Vol. 2 (1969)Google Scholar
  13. Noyan, I.C., and J.B. Cohen: Residual stress-measurement by diffraction and interpretation. Springer Verlag, (1987)Google Scholar
  14. Rester, M., C. Motz, and R. Pippan: Microstructural investigation of the volume beneath nanoindentations in copper. Acta Mat. 55 (2007), 6427–6435CrossRefGoogle Scholar
  15. Kiener, D., R. Pippan, C. Motz, and H. Kreuzer: Microstructural evolution of the deformed volume beneath microindents in tungsten and copper. Acta Mat. 54 (2006), 2801–2811CrossRefGoogle Scholar
  16. Nix, W.D., and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46 (1998), 411–425CrossRefGoogle Scholar
  17. Kiener, D., M. Rester, S. Scheriau, B. Yang, R. Pippan, and G. Dehm: Influence of external and internal length scale on the flow stress of copper. Int. J. Mat. Res. (formerly Z. Metallk.) 98 (2007), 1047–1053CrossRefGoogle Scholar
  18. Zuo, L., and A.H.W. Ngan: Molecular dynamics study on compressive yield strength in Ni3Al micro-pillars. Phil. Mag. Let. 86 (2006), 355–365CrossRefGoogle Scholar
  19. Parthasarathy, T.A., S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Mat. 56 (2007), 313–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • H. Wörgötter
    • 1
  • D. Kiener
    • 2
  • J.M. Purswani
    • 3
  • D. Gall
    • 3
  • G. Dehm
    • 4
  1. 1.Materials Center Leoben Forschung GmbHLeobenAustria
  2. 2.Materials Center Leoben Forschung GmbHLeobenAustria
  3. 3.Department of Materials Science and Engineering – Rensselar Polytechnic InstituteTroyUSA
  4. 4.Erich Schmid Institute of Materials Science, Austrian Academy of SciencesLeobenAustria

Personalised recommendations