Advertisement

Optimal spectral and energy efficiency trade-off for massive MIMO technology: analysis on modified lion and grey wolf optimization

  • Satyanarayana Murthy NimmagaddaEmail author
Methodologies and Application
  • 11 Downloads

Abstract

As the technology makes progress towards the era of fifth generation (5G) communication networks, energy efficiency (EE) becomes an significant design criterion, because it guarantees sustainable evolution. In this regard, the massive multiple-input multiple-output (MIMO) technology, where the base stations are outfitted with enormous count of antennas so as to reach multiple orders of spectral and energy efficiency gains, will be a fundamental technology enabler for 5G. This paper plans to implement a massive MIMO model considering the spectral efficiency (SE) and EE. Here, the main goal is to generate the optimal solutions for beam-forming vectors and power allocation. The optimal solution is formed in such a way that both the SE and EE are maximum through resource efficiency metric model. The beam-forming vectors and power allocations are generated by two modified meta-heuristic algorithm to frame a valuable analysis. The first algorithm uses the modified grey wolf optimization (GWO) termed as improved random vector-based GWO (IRV-GWO), and the second algorithm uses the modified lion algorithm (LA) termed as improved random vector-based LA (IRV-LA). Both the algorithms have the ability to solve the complex optimization problems under different applications with respect to better convergence rate, which in turn performs well for pertaining better trade-off between the SE and EE in massive MIMO technology.

Keywords

Massive MIMO system Spectral efficiency Energy efficiency RE metric Improved meta-heuristic Convergence analysis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Asadi A, Wang Q, Mancuso V (2014) A survey on device-to-device communication in cellular networks. IEEE Commun Surv Tutor 16(4):1801–1819.  https://doi.org/10.1109/COMST.2014.2319555 CrossRefGoogle Scholar
  2. Boothalingam R (2018) Optimization using lion algorithm: a biological inspiration from lion’s social behavior. Evol Intel 11(1–2):31–52.  https://doi.org/10.1007/s12065-018-0168-y CrossRefGoogle Scholar
  3. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Chen X, Wang X, Chen X (2013) Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wirel Commun Lett 2(6):667–670.  https://doi.org/10.1109/WCL.2013.092813.130514 CrossRefGoogle Scholar
  5. Fan J, Zhang Y (2019) Energy efficiency of massive MU-MIMO with limited antennas in downlink cellular networks. Digit Signal Process 86:1–10.  https://doi.org/10.1016/j.dsp.2018.10.002 CrossRefGoogle Scholar
  6. Fan L, Zhao R, Gong F, Yang N, Karagiannidis GK (2017) Secure multiple amplify-and-forward relaying over correlated fading channels. IEEE Trans Commun 65(7):2811–2820.  https://doi.org/10.1109/TCOMM.2017.2691712 CrossRefGoogle Scholar
  7. Fan J, Li W, Zhang Y (2018) Pilot contamination mitigation by fractional pilot reuse with threshold optimization in massive MIMO systems. Digit Signal Process 78:197–204.  https://doi.org/10.1016/j.dsp.2018.02.011 CrossRefGoogle Scholar
  8. Gandomi H, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18:89–98.  https://doi.org/10.1016/j.cnsns.2012.06.009 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Ghadyani M, Shahzadi A (2018) Compressive sensing power control for interference management in D2D underlaid massive MIMO systems. AEU Int J Electron Commun 90:79–87.  https://doi.org/10.1016/j.aeue.2018.03.036 CrossRefGoogle Scholar
  10. He A, Wang L, Elkashlan M, Chen Y, Wong K (2015) Spectrum and energy efficiency in massive MIMO enabled HetNets: a stochastic geometry approach. IEEE Commun Lett 19(12):2294–2297.  https://doi.org/10.1109/LCOMM.2015.2493060 CrossRefGoogle Scholar
  11. He A, Wang L, Chen Y, Wong K, Elkashlan M (2017) Spectral and energy efficiency of uplink D2D underlaid massive MIMO cellular networks. IEEE Trans Commun 65(9):3780–3793.  https://doi.org/10.1109/TCOMM.2017.2712708 CrossRefGoogle Scholar
  12. Hu B, Liu Y, Xie G, Gao J-C, Yang Y-L (2014) Energy efficiency of massive MIMO wireless communication systems with antenna selection. J China Univ Posts Telecommun 21(6):1–8.  https://doi.org/10.1016/S1005-8885(14)60338-1 CrossRefGoogle Scholar
  13. Huang Y, He S, Wang J, Zhu J (2018) Spectral and energy efficiency tradeoff for massive MIMO. IEEE Trans Veh Technol 67(8):6991–7002.  https://doi.org/10.1109/TVT.2018.2824311 CrossRefGoogle Scholar
  14. Jin WTS, Wen C-K, Jiang T (2017) Spectral efficiency of multi-user millimeter wave systems under single path with uniform rectangular arrays. EURASIP J Wirel Commun Netw 181:1–13.  https://doi.org/10.1186/s13638-017-0966-4 CrossRefGoogle Scholar
  15. Lee J-H, Lee J-Y (2017) Optimal beamforming-selection spatial precoding using population-based stochastic optimization for massive wireless MIMO communication systems. J Franklin Inst 354(10):4247–4272.  https://doi.org/10.1016/j.jfranklin.2017.03.002 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Lu L, Li GY, Swindlehurst AL, Ashikhmin A, Zhang R (2014) An overview of massive MIMO: benefits and challenges. IEEE J Sel Top Signal Process 8(5):742–758.  https://doi.org/10.1109/JSTSP.2014.2317671 CrossRefGoogle Scholar
  17. Marzetta TL (2010) Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun 9(11):3590–3600.  https://doi.org/10.1109/TWC.2010.092810.091092 CrossRefGoogle Scholar
  18. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61.  https://doi.org/10.1016/j.advengsoft.2013.12.007 CrossRefGoogle Scholar
  19. Ngo HQ, Larsson E, Marzetta T (2013) Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun 61(4):1436–1449.  https://doi.org/10.1109/TCOMM.2013.020413.110848 CrossRefGoogle Scholar
  20. Pan G et al (2016) On secrecy performance of MISO SWIPT systems with TAS and imperfect CSI. IEEE Trans Commun 64(9):3831–3843.  https://doi.org/10.1109/TCOMM.2016.2573822 CrossRefGoogle Scholar
  21. Patcharamaneepakorn P, Wu S, Wang C-X, Aggoune E-HM, Alwakeel MM, Ge X, Renzo MD (2016) Spectral, energy, and economic efficiency of 5G multicell massive MIMO systems with generalized spatial modulation. IEEE Trans Veh Technol 65(12):9715–9731CrossRefGoogle Scholar
  22. Pedersen MEH, Chipperfield AJ (2010) Simplifying particle swarm optimization. Appl Soft Comput 10(2):618–628.  https://doi.org/10.1016/j.asoc.2009.08.029 CrossRefGoogle Scholar
  23. Rusek F et al (2013) Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag 30(1):40–60.  https://doi.org/10.1109/MSP.2011.2178495 CrossRefGoogle Scholar
  24. Sanguinetti L, Zappone A, Debbah M (2019) Deep learning power allocation in massive MIMO. Electr Eng Syst Sci 1–5. https://arxiv.org/abs/1812.03640
  25. Tan W, Xie D, Xia J, Tan W, Fan L, Jin S (2018) Spectral and energy efficiency of massive MIMO for hybrid architectures based on phase shifters. IEEE Access 6:11751–11759.  https://doi.org/10.1109/ACCESS.2018.2796571 CrossRefGoogle Scholar
  26. Tang J, So D, Alsusa E, Hamdi K (2014) Resource efficiency: a new paradigm on energy efficiency and spectral efficiency tradeoff. IEEE Trans Wirel Commun 13(8):4656–4669.  https://doi.org/10.1109/TWC.2014.2316791 CrossRefGoogle Scholar
  27. Xin Y, Wang D, Li J, Zhu H, Wang J, You X (2016) Area spectral efficiency and area energy efficiency of massive MIMO cellular systems. IEEE Trans Veh Technol 65(5):3243–3254.  https://doi.org/10.1109/TVT.2015.2436896 CrossRefGoogle Scholar
  28. Yang J, Wang H, Ding J, Gao X, Ding Z (2017) Spectral and energy efficiency analysis for massive MIMO multi-pair two-way relaying networks under generalized power scaling. Sci China Inf Sci.  https://doi.org/10.1007/s11432-016-9007-2 CrossRefGoogle Scholar
  29. Zhang J, Dai L, Sun S, Wang Z (2016a) On the spectral efficiency of massive MIMO systems with low-resolution ADCs. IEEE Commun Lett 20(5):842–845.  https://doi.org/10.1109/LCOMM.2016.2535132 CrossRefGoogle Scholar
  30. Zhang Z, Chen Z, Shen M, Xia B (2016b) Spectral and energy efficiency of multipair two-way full-duplex relay systems with massive MIMO. IEEE J Sel Areas Commun 34(4):848–863.  https://doi.org/10.1109/JSAC.2016.2544458 CrossRefGoogle Scholar
  31. Zhang J, Dai L, He Z, Jin S, Li X (2017) Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels. IEEE J Sel Areas Commun 35(6):1327–1338.  https://doi.org/10.1109/JSAC.2017.2687278 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.ECE DepartmentV R Siddhartha Engineering CollegeVijayawadaIndia

Personalised recommendations