Advertisement

Random orthocenter strategy in interior search algorithm and its engineering application

  • Bo Han
  • Changqiang Huang
  • Shangqin Tang
  • Yongbo Xuan
  • Zhuoran Zhang
  • Zhou HuanEmail author
Focus
  • 14 Downloads

Abstract

Determining how to improve the global search ability and adaptability of an algorithm without reducing the convergence speed is still a major challenge for most meta-heuristic algorithms. This paper proposes a new random orthocenter strategy combined with a Levy flight strategy to improve the interior search algorithm (ISA). The random orthocenter strategy is to randomly select a point outside the element and mirror to form a triangle and to solve the image of the element based on the orthocentre, which offsets the unique control parameters in the algorithm. The Levy flight strategy further prevents the algorithm from falling into local optimization. Thirteen benchmark functions and two engineering problems are selected for simulation tests. The experimental results show that the random orthocenter ISA significantly improves the global optimization and adaptability and has advantages on application in complex practical engineering optimization problems.

Keywords

Random orthocenter strategy Levy flight Control parameters ROISA Global optimization 

Notes

Compliance with ethical standards

Conflict of interest

We all declare that we have no conflict of interest in this paper.

References

  1. Ahrari A, Atai AA (2010) Grenade explosion method—a novel tool for optimization of multimodal functions. Appl Soft Comput 10(4):1132–1140CrossRefGoogle Scholar
  2. Akay B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120–142CrossRefGoogle Scholar
  3. Aslantas V (2009) An optimal robust digital image watermarking based on svd using differential evolution algorithm. Opt Commun 282(5):769–777CrossRefGoogle Scholar
  4. Bentouati B, Chettih S, Chaib L, Sreeram V (2017) Interior search algorithm for optimal power flow with non-smooth cost functions. Cogent Eng 4(1):1293598CrossRefGoogle Scholar
  5. Chang X, Yang Y (2016) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Trans Neural Netw Learn Syst 28:1–12MathSciNetGoogle Scholar
  6. Chang Xiaojun, Yang Yi (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632CrossRefGoogle Scholar
  7. Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2016) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 5:1–18CrossRefGoogle Scholar
  8. Chang X, Ma Z, Lin M, Yang Y, Hauptmann A (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26:1–1MathSciNetzbMATHCrossRefGoogle Scholar
  9. Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941CrossRefGoogle Scholar
  10. Du DW, Simon DJ, Ergezer M (2009) Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In: IEEE international conference on systems. IEEEGoogle Scholar
  11. Gandomi, Amir H (2014) Interior search algorithm (isa): a novel approach for global optimization. ISA Trans 53(4):1168–1183CrossRefGoogle Scholar
  12. Gandomi AH, Roke DA (2015) Engineering optimization using interior search algorithm. In: Swarm intelligence. IEEEGoogle Scholar
  13. Hongchao W, Jin C, Gongyun D (2017) Flexible manufacturing workshops scheduling methods based on modified five factors scheduling algorithm. Light Ind Mach 5:8Google Scholar
  14. Hsieh T-J (2014) A bacterial gene recombination algorithm for solving constrained optimization problems. Appl Math Comput 231:187–204MathSciNetzbMATHGoogle Scholar
  15. Jariwala R, Patidar R, George NV (2015) A levy interior search algorithm for chaotic system identifications. Adv Intell Syst Comput 378:137–147Google Scholar
  16. Jiang M, Yuan D, Cheng Y (2009). Improved artificial fish Swarm algorithm. In: Fifth international conference on natural computation. IEEE Computer SocietyGoogle Scholar
  17. Kamaruzaman AF, Zain AM, Yusuf SM, Udin A (2013) Levy flight algorithm for optimization problems—a literature review. Appl Mech Mater 421:496–501CrossRefGoogle Scholar
  18. Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetics. IEEE Trans Antennas Propag 58(4):1269–1278CrossRefGoogle Scholar
  19. Kumar M, Rawat TK, Jain A, Singh AA, Mittal A (2015) Design of digital differentiators using interior search algorithm. Procedia Comput Sci 57:368–376CrossRefGoogle Scholar
  20. Kumar M, Rawat TK, Aggarwal A (2017) Adaptive infinite impulse response system identification using modified-interior search algorithm with lèvy flight. ISA Trans 67:266–279CrossRefGoogle Scholar
  21. Li C, Ding L (2011) An improved crowding-based differential evolution for multimodal optimization. In: International conference on electrical and control engineeringGoogle Scholar
  22. Li G, Boukhatem L, Wu J (2017a) Adaptive quality-of-service-based routing for vehicular ad hoc networks with ant colony optimization. IEEE Trans Veh Technol 66(4):3249–3264CrossRefGoogle Scholar
  23. Li Z, Nie F, Chang X, Yang Y (2017b) Beyond trace ratio: weighted harmonic mean of trace ratios for multiclass discriminant analysis. IEEE Trans Knowl Data Eng 99:1–1Google Scholar
  24. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33(9):1455–1465CrossRefGoogle Scholar
  25. Mersha AG, Dempe S (2012) Feasible direction method for bilevel programming problem. Optimization 61(5):597–616MathSciNetzbMATHCrossRefGoogle Scholar
  26. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249CrossRefGoogle Scholar
  27. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133CrossRefGoogle Scholar
  28. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRefGoogle Scholar
  29. Moghadam MS, Nezamabadi-Pour H, Farsangi MM (2012) A quantum behaved gravitational search algorithm. Intell Inf Manag 4(6):6zbMATHGoogle Scholar
  30. Mohammad E, Sayed-Farhad M, Hojat K, Saeed F, Ravinesh D, Binti OF et al (2018) Bat algorithm for dam–reservoir operation. Environ Earth Sci 77(13):510CrossRefGoogle Scholar
  31. Moosavian N, Kasaee Roodsari B (2014) Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evol Comput 17:14–24CrossRefGoogle Scholar
  32. Moravej M, Hosseini-Moghari SM (2016) Large scale reservoirs system operation optimization: the interior search algorithm (isa) approach. Water Resour Manag 30(10):3389–3407CrossRefGoogle Scholar
  33. Neri F, Mininno E, Iacca G (2013) Compact particle swarm optimization. Inf Sci 239:96–121MathSciNetzbMATHCrossRefGoogle Scholar
  34. Nguyen TT, Vo DN (2015) Modified cuckoo search algorithm for short-term hydrothermal scheduling. Int J Electr Power Energy Syst 65:271–281CrossRefGoogle Scholar
  35. Pan WT (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74CrossRefGoogle Scholar
  36. Rabanal P, Rodríguez I, Rubio F (2010) Applying river formation dynamics to the steiner tree problem. In: IEEE international conference on cognitive informatics. IEEEGoogle Scholar
  37. Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):96–101MathSciNetCrossRefGoogle Scholar
  38. Shah-Hosseini Hamed (2008) Intelligent water drops algorithm. Int J Intell Comput Cybern 1(2):193–212MathSciNetzbMATHCrossRefGoogle Scholar
  39. Siddique N, Adeli H (2016) Gravitational search algorithm and its variants. Int J Pattern Recognit Artif Intell 30:1639001MathSciNetCrossRefGoogle Scholar
  40. Sun M, Zhuang H, Zhou X, Lu K, Li C (2014) HPSO: prefetching based scheduling to improve data locality for MapReduce clusters. In: Conference on Design. EDA ConsortiumGoogle Scholar
  41. Trivedi IN, Jangir P, Bhoye M, Jangir N (2016) An economic load dispatch and multiple environmental dispatch problem solution with microgrids using interior search algorithm. Neural Comput Appl 30:2173–2189CrossRefGoogle Scholar
  42. Usman MJ, Samad A, Ismail, Chizari H, Aliyu A (2017) Energy-efficient virtual machine allocation technique using interior search algorithm for cloud datacenter. In: Student project conference. IEEEGoogle Scholar
  43. Viswanathan GM, Afanasyev V, Buldyrev SV, Havlin S, Da Luz MGE, Raposo EP et al (2000) Lévy flights in random searches. Physica A 282(1):1–12CrossRefGoogle Scholar
  44. Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34MathSciNetCrossRefGoogle Scholar
  45. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature and biologically inspired computing (NaBIC). IEEEGoogle Scholar
  46. Yao B, Yu B, Hu P, Gao J, Zhang M (2016) An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Ann Oper Res 242(2):303–320MathSciNetzbMATHCrossRefGoogle Scholar
  47. Zhang Z, Huang H, Huang C, Han B (2018) An improved tlbo with logarithmic spiral and triangular mutation for global optimization. Neural Comput Appl 31:4435–4450CrossRefGoogle Scholar
  48. Zhang Z, Huang C, Dong K, Huang H (2019) Birds foraging search: a novel population-based algorithm for global optimization. Memet Comput 11:1–30CrossRefGoogle Scholar
  49. Zhou B (2013) Equilibrium-inspired multiple group search optimization with synergistic learning for multi-objective electric power dispatch. IEEE Trans Power Syst 28(4):3534–3545CrossRefGoogle Scholar
  50. Zhu Z, Hu J, Yuan X, Sun H, Sun H (2010) Research on structural optimization of the aluminum alloy wheel. Wase Int Conf Inf Eng 3:405–408Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bo Han
    • 1
  • Changqiang Huang
    • 1
  • Shangqin Tang
    • 1
  • Yongbo Xuan
    • 2
  • Zhuoran Zhang
    • 1
  • Zhou Huan
    • 1
    Email author
  1. 1.Aeronautics Engineering CollegeAir Force Engineering UniversityXi’anChina
  2. 2.Air Force Research InstituteBeijingChina

Personalised recommendations