Advertisement

Quantification of cultural identity through artificial intelligence: a case study on the Waorani Amazonian ethnicity

  • Aldrin Espín-León
  • Antonio Jimeno-Morenilla
  • María Luisa Pertegal-FelicesEmail author
  • Jorge Azorín-López
Focus

Abstract

The first step toward a Smart Village is that the community itself can benefit from the novel techniques that are applied. Some communities are far from being able to use the benefits that these technologies usually offer; however, they can benefit from the techniques that have led to the development of smart cities. This is the case of the indigenous people belonging to communities in the Amazon: They have seen their identity drastically eroded in recent decades as a result of the process of Western acculturation. In this context, the use of artificial intelligence techniques may contribute to the detection and quantification of cultural identity loss by identifying the most and least affected identity components of this process. This research work presents a quantitative method, which evaluates several variables of the cultural identity of an Ecuadorian Amazonian indigenous community: the Waorani. The proposed method automatically classifies the individuals and provides a subspace of it able to identify the weights of the subcomponents of this instrument in regard to its contribution to the Waorani identity. The systematic application of the instrument together with the artificial intelligence-based approach can provide decision makers with valuable information about which aspects of their identity are most sensitive to change and thus help design development policies that minimally interfere with their ethnic identity.

Keywords

Cultural identity measurement Preservation of ethnic identity Amazonian Waorani community Artificial intelligence 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795CrossRefGoogle Scholar
  2. Abualigah LM, Khader AT, Hanandeh ES, Gandomi AH (2017) A novel hybridization strategy for Krill herd algorithm applied to clustering techniques. Appl Soft Comput 60:423–435CrossRefGoogle Scholar
  3. Abualigah LM, Khader AT, Hanandeh ES (2018) A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125CrossRefGoogle Scholar
  4. Abualigah LM, Khader AT, Hanandeh ES (2019) Modified krill herd algorithm for global numerical optimization problems. In: Shandilya SK et al (eds) Advances in nature-inspired computing and applications. Springer, Berlin, pp 205–221CrossRefGoogle Scholar
  5. Alkhammash EH, Jussila J, Lytras MD, Visvizi A (2019) Annotation of smart cities Twitter micro-contents for enhanced citizen’s engagement. IEEE Access 7:116267–116276CrossRefGoogle Scholar
  6. Bagnoli A (2004) Researching identities with multi-method autobiographies. Sociol Res Online 9(2):1–15CrossRefGoogle Scholar
  7. Berry JW (1990) Understanding individuals moving between cultures. Appl Cross Cult Psychol 14(1):232CrossRefGoogle Scholar
  8. Carley K (1991) A theory of group stability. Am Sociol Rev 1:331–354CrossRefGoogle Scholar
  9. Carley KM (1996) Artificial intelligence within sociology. Sociol Methods Res 25(1):3–30CrossRefGoogle Scholar
  10. Carrasco S (1999) Indicadores culturales: una reflexión. Univ Valencia Recuper 21:3–4Google Scholar
  11. Carrasco-Arroyo S (2006) Medir la cultura: una tarea inacabada, pp 1–2Google Scholar
  12. Castro VS (2002) La Escala de Identidad Etnica Multigrupo (EIEM) en el contexto costarricense 1. Actual Psicol 18(105):47–67Google Scholar
  13. Chang M-C, Bus P, Schmitt G (2018) Feature extraction and k-means clustering approach to explore important features of urban identity. presentado en proceedings—16th IEEE international conference on machine learning and applications, ICMLA 2017, vol 2018, pp 1139–1144Google Scholar
  14. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357zbMATHCrossRefGoogle Scholar
  15. Chen J, Fang H, Saad Y (2009) Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection. J Mach Learn Res 10(Sep):1989–2012MathSciNetzbMATHGoogle Scholar
  16. CODENPE (2011) Construyendo el Estado Plurinacional. CODENPE, QuitoGoogle Scholar
  17. Cross WE Jr (1978) The Thomas and Cross models of psychological nigrescence: a review. J Black Psychol 5(1):13–31CrossRefGoogle Scholar
  18. Daugman J (2009) How IRIS recognition works. In: Bovik A (ed) The essential guide to image processing. Elsevier, Amsterdam, pp 715–739CrossRefGoogle Scholar
  19. De la Montaña Andrés E (2013) Cacería de subsistencia de distintos grupos indígenas de la Amazonía ecuatoriana. Rev Ecosistemas 22(2):84–96CrossRefGoogle Scholar
  20. de Vivieros C (2004) Perspectivismo y multinaturalismo en la América indígena. In: Tierra Adentro: Territorio indígena y percepción del entorno. International Work Group for Indigenous Affairs, LimaGoogle Scholar
  21. Denton NA, Massey DS (1988) The dimensions of residential segregation. Soc Forces 67(2):281–315CrossRefGoogle Scholar
  22. Duró VE (2001) Evaluación de sistemas de reconocimiento biométrico. Dep. Electrónica Automática Esc. Univ. Politécnica, MataróGoogle Scholar
  23. Enrique AM (1982) Lucha política y origen de los partidos políticos en el Ecuador, 2da edn. Corporación Editora Nacional, QuitoGoogle Scholar
  24. Espín JV, Marín MÁ, Rodríguez M, Cabrera F (1998) Elaboración de un cuestionario para medir la identidad étnica y la aculturación en la adolescencia. Rev Educ Madr 315:227–249Google Scholar
  25. Espinosa de Rivero O (2009) Ciudad e identidad cultural.?` Cómo se relacionan con lo urbano los indígenas amazónicos peruanos en el siglo XXI? Bull Inst Fr Détudes Andin 38(1):47–59Google Scholar
  26. Esteban M, Vila I (2010) Modelos culturales y retratos de identidad. Un estudio empírico con jóvenes de distintos contextos sociodemográficos. Estud Psicol 31(2):173–185CrossRefGoogle Scholar
  27. Freeman LC (1993) Finding groups with a simple genetic algorithm. J Math Sociol 17(4):227–241MathSciNetzbMATHCrossRefGoogle Scholar
  28. González-Varas I (1999) Conservación de bienes culturales: teoría, historia, principios y normas. Catedra, MadridGoogle Scholar
  29. Goodenaugh WH, Kahn J, Kroeber A, Malinowski B, Tylor EB, White LA (1975) El concepto de cultura: textos fundamentales. Anagrama, BarcelonaGoogle Scholar
  30. Guest G, Namey EE, Mitchell ML (2012) Collecting qualitative data: a field manual for applied research. Sage, Thousand OaksGoogle Scholar
  31. Gutta S, Huang JR, Jonathon P, Wechsler H (2000) Mixture of experts for classification of gender, ethnic origin, and pose of human faces. IEEE Trans Neural Netw 11(4):948–960CrossRefGoogle Scholar
  32. Gyongyi ZI, Heymans M, Lopyrev M, Roehrig H (2014) US Patent No 8,626,835. US Patent and Trademark Office, Washington, DCGoogle Scholar
  33. Helms JE (1995) An update of Helm’s White and people of color racial identity models. In: Versions were presented at the Psychology and Societal Transformation Conference, U Western Cape, South Africa, Jan 1994, and at a workshop entitled “Helm’s Racial Identity Theory,” Annual Multicultural Winter Roundtable, Teachers Coll–Columbia U, New York, Feb 1994Google Scholar
  34. Hong L, Jain AK, Pankanti S (1999) Can multibiometrics improve performance?. In: Proceedings AutoID, vol 99, pp 59–64Google Scholar
  35. Jain AK, Dass SC, Nandakumar K (2004) Soft biometric traits for personal recognition systems. In: International conference on biometric authentication, pp 731–738CrossRefGoogle Scholar
  36. Lawshe CH (1975) A quantitative approach to content validity. Pers Psychol 28(4):563–575CrossRefGoogle Scholar
  37. Lu X, Jain AK (2004) Ethnicity identification from face images. In: Proceedings of SPIE, vol 5404, pp 114–123Google Scholar
  38. Muradas IM, Rodríguez JRO (2005) Diseño de un instrumento de medida para el análisis comparativo de los recursos culturales tangibles. Número Patrocinado Por, p 245Google Scholar
  39. Otto C, Wang D, Jain AK (2018) Clustering millions of faces by identity. IEEE Trans Pattern Anal Mach Intell 40(2):289–303CrossRefGoogle Scholar
  40. Phinney JS, Rotheram MJ (1986) Children’s ethnic socialization: pluralism and development. ERIC, New YorkGoogle Scholar
  41. Quijano A (1992) Colonialidad y modernidad/racionalidad. Perú Indígena 13(29):11–20Google Scholar
  42. Racines Izquierdo D (2012) La occidentalización de los waoranis. B.S. thesis, USFQ, QuitoGoogle Scholar
  43. Sam DL, Berry JW (2010) Acculturation: when individuals and groups of different cultural backgrounds meet. Perspect Psychol Sci 5(4):472–481CrossRefGoogle Scholar
  44. Schneider SL, Heath AF (2019) Ethnic and cultural diversity in Europe: validating measures of ethnic and cultural background. J Ethnic Migr Stud.  https://doi.org/10.1080/1369183X.2018.1550150 CrossRefGoogle Scholar
  45. Shakhnarovich G, Viola PA, Moghaddam B (2002) A unified learning framework for real time face detection and classification. In: Proceedings of fifth IEEE international conference on automatic face gesture recognition, pp 16–23Google Scholar
  46. Tajfel H (1981) Human groups and social categories: studies in social psychology. CUP, CambridgeGoogle Scholar
  47. Tristán-López A (2008) Modificación al modelo de Lawshe para el dictamen cuantitativo de la validez de contenido de un instrumento objetivo. Av Medición 6(1):37–48Google Scholar
  48. UNESCO (2002) Declaración Universal sobre la Diversidad Cultural una visión una plataforma conceptual un semillero de ideas un paradigma nuevo. UNESCO, ParisGoogle Scholar
  49. Vega VC (2007) Adaptación argentina de un inventario para medir identidad de rol de género. Rev Latinoam Psicol 39(3):537–546Google Scholar
  50. Vergara AI, Páez D (1993) Revisión teórico-metodológica de los instrumentos para la medición de la identidad de género. Rev Psicol Soc 8(2):133–152CrossRefGoogle Scholar
  51. Verkuyten M (1990) Self-esteem and the evaluation of ethnic identity among Turkish and Dutch adolescents in the Netherlands. J Soc Psychol 130(3):285–297CrossRefGoogle Scholar
  52. Visvizi A, Lytras MD (2018) Rescaling and refocusing smart cities research: from mega cities to smart villages. J Sci Technol Policy Manag 9(2):134–145CrossRefGoogle Scholar
  53. Visvizi A, Jussila J, Lytras MD, Ijäs M (2019) Tweeting and mining OECD-related microcontent in the post-truth era: a cloud-based app. Comput Human Behav.  https://doi.org/10.1016/j.chb.2019.03.022 CrossRefGoogle Scholar
  54. Weber M (1978) Economy and society: an outline of interpretive sociology, vol 1. University of California Press, BerkeleyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Sociology and Social WorkCentral University of EcuadorQuitoEcuador
  2. 2.Department of Computer TechnologyUniversity of AlicanteAlicanteSpain
  3. 3.Developmental and Educational Psychology DepartmentUniversity of AlicanteAlicanteSpain

Personalised recommendations