Advertisement

A non-compensatory classification approach for multi-criteria ABC analysis

  • Mohamed Radhouane DouissaEmail author
  • Khaled Jabeur
Methodologies and Application
  • 32 Downloads

Abstract

ABC analysis is a widespread inventory management technique designed to classify inventory items—based on their weighted scores—into three ordered categories A, B and C, where category A contains the most important items and category C includes the least important ones. This paper proposes a new ABC classification approach which involves a non-compensatory aggregation procedure, based on a simplified ELECTRE III method, to compute the score of each inventory item. A non-compensatory aggregation scheme means that the bad scores of an item on some significant criteria could not be offset by its high performances on the other criteria. This way of proceeding prohibits this kind of items from being classified into good categories and therefore generates a more realistic ABC classification of inventory items. Since the application of the simplified ELECTRE III method requires the knowledge of some parameter values, the continuous variable neighborhood search meta-heuristic will be used for their estimation. The comparative study—conducted on two real datasets—shows that the classification of items produced by our proposed approach has generated the lowest inventory cost value among those produced by all tested classification models.

Keywords

ELECTRE III ABC inventory classification Non-compensatory aggregation procedure Variable neighborhood search Inventory management 

Notes

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Agarwal R, Mittal M (2019) Inventory classification using multi-level association rule mining. Int J Decis Support Syst Technol 11(2):1–12CrossRefGoogle Scholar
  2. Aktepe A, Ersoz S, Turker AK, Barisci N, Dalgic A (2018) An inventory classification approach combining expert systems, clustering, and fuzzy logic with the abc method, and an application. S Afr J Ind Eng 29(1):49–62Google Scholar
  3. Arikan F, Citak S (2017) Multiple criteria inventory classification in an electronics firm. Int J Inf Technol Decis Mak 16(02):315–331CrossRefGoogle Scholar
  4. Augusto M, Lisboa J, Yasin M, Figueira JR (2008) Benchmarking in a multiple criteria performance context: an application and a conceptual framework. Eur J Oper Res 184(1):244–254zbMATHCrossRefGoogle Scholar
  5. Babai MZ, Ladhari T, Lajili I (2015) On the inventory performance of multi-criteria classification methods: empirical investigation. Int J Prod Res 53(1):279–290CrossRefGoogle Scholar
  6. Banias G, Achillas C, Vlachokostas C, Moussiopoulos N, Tarsenis S (2010) Assessing multiple criteria for the optimal location of a construction and demolition waste management facility. Build Environ 45(10):2317–2326CrossRefGoogle Scholar
  7. Baykasoğlu A, Subulan K, Karaslan FS (2016) A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification. Appl Soft Comput 42:1–17CrossRefGoogle Scholar
  8. Beheshti HM, Grgurich D, Gilbert FW (2012) ABC inventory management support system with a clinical laboratory application. J Promot Manag 18(4):414–435CrossRefGoogle Scholar
  9. Bhattacharya A, Sarkar B, Mukherjee SK (2007) Distance-based consensus method for abc analysis. Int J Prod Res 45:3405–3420zbMATHCrossRefGoogle Scholar
  10. Brans J-P, Vincke P, Mareschal B (1986) How to select and how to rank projects: the promethee method. Eur J Oper Res 24(2):228–238MathSciNetzbMATHCrossRefGoogle Scholar
  11. Cakir O, Canbolat MS (2008) A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Syst Appl 35:1367–1378CrossRefGoogle Scholar
  12. Çebi F, Kahraman C, Bolat B (2010) A multiattribute ABC classification model using fuzzy AHP. In: 40th International conference on computers and industrial engineering (CIE), IEEE, pp 1–6Google Scholar
  13. Chen J-X (2011) Peer-estimation for multiple criteria ABC inventory classification. Comput Oper Res 38:1784–1791MathSciNetzbMATHCrossRefGoogle Scholar
  14. Chen J-X (2012) Multiple criteria ABC inventory classification using two virtual items. Int J Prod Res 50(6):1702–1713CrossRefGoogle Scholar
  15. Chen Y, Li KW, Levy J, Hipel KW, Kilgour DM (2006) Rough-set multiple-criteria ABC analysis. In: International conference on rough sets and current trends in computing, Springer, pp 328–337Google Scholar
  16. Chen Y, Li KW, Marc Kilgour D, Hipel KW (2008) A case-based distance model for multiple criteria ABC analysis. Comput Oper Res 35(3):776–796zbMATHCrossRefGoogle Scholar
  17. Chen Y, Li KW, Levy J, Hipel KW, Kilgour DM (2008) A rough set approach to multiple criteria ABC analysis. Lect Notes Comput Sci 5084:35–52MathSciNetzbMATHCrossRefGoogle Scholar
  18. Cherif H, Ladhari T (2016) A novel multi-criteria inventory classification approach: artificial bee colony algorithm with VIKOR method. In: International symposium on computer and information sciences, Springer, pp 63–71Google Scholar
  19. Cherif H, Ladhari T (2016) Multiple criteria inventory classification approach based on differential evolution and electre iii. In: International conference on hybrid intelligent systems, Springer, pp 68–77Google Scholar
  20. Cherif H, Ladhari T (2016) A new hybrid multi-criteria ABC inventory classification model based on differential evolution and Topsis. In: International conference on hybrid intelligent systems, Springer, pp 78–87Google Scholar
  21. Chu CW, Liang GS, Liao CT (2008) Controlling inventory by combining ABC analysis and fuzzy classification. Comput Ind Eng 55:841–851CrossRefGoogle Scholar
  22. Cook WD, Kress M, Seiford L (1996) Data Envelopment Analysis in the Presence of both Quantitative and Qualitative Factors. J Oper Res Soc 47(7):945–953zbMATHCrossRefGoogle Scholar
  23. Darmanto E, Subanar RW, Hartati S (2019) A new integration of AdaBoost and profile matching algorithm to improve ABC analysis for drug inventory. Int J Sci Eng Res 10(2):779–788Google Scholar
  24. Dias LC, Mousseau V (2006) Inferring electre’s veto-related parameters from outranking examples. Eur J Oper Res 170(1):172–191zbMATHCrossRefGoogle Scholar
  25. Dias L, Mousseau V, Figueira J, Clımaco J (2002) An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI. Eur J Oper Res 138(2):332–348zbMATHCrossRefGoogle Scholar
  26. Douissa MR, Jabeur K (2016) A new model for multi-criteria ABC inventory classification: PROAFTN method. Procedia Comput Sci 96:550–559CrossRefGoogle Scholar
  27. Douissa MR, Jabeur K (2016) A new multi-criteria ABC inventory classification model based on a simplified electre iii method and the continuous variable neighborhood search. In: ILS 2016-6th international conference on information systems, logistics and supply chainGoogle Scholar
  28. Eraslan E, IÇ YT. (2019) An improved decision support system for ABC inventory classification. Evol Syst.  https://doi.org/10.1007/s12530-019-09276-7
  29. Figueira J, Roy B (2002) Determining the weights of criteria in the electre type methods with a revised simos’ procedure. Eur J Oper Res 139(2):317–326zbMATHCrossRefGoogle Scholar
  30. Figueira J, Mousseau V, Roy B (2005) ELECTRE methods. In Multiple criteria decision analysis: state of the art surveys, Springer, pp 133–153Google Scholar
  31. Flores BE, Whybark DC (1986) Multiple criteria ABC analysis. Int J Oper Prod Manag 6(3):38–46CrossRefGoogle Scholar
  32. Flores BE, Whybark DC (1987) Implementing multiple criteria ABC analysis. J Oper Manag 7(1–2):79–85CrossRefGoogle Scholar
  33. Flores BE, Olson DL, Dorai VK (1992) Management of multicriteria inventory classification. Math Comput Model 16:71–82zbMATHCrossRefGoogle Scholar
  34. Fu Y, Lai KK, Miao Y, Leung J (2015) A distance-based decision-making method to improve multiple criteria ABC inventory classification. Int Trans Oper Res 23:969–978MathSciNetzbMATHCrossRefGoogle Scholar
  35. Ghorabaee MK, Zavadskas EK, Olfat L, Turskis Z (2015) Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 26:435–451CrossRefGoogle Scholar
  36. Govindan K, Jepsen MB (2016) ELECTRE: a comprehensive literature review on methodologies and applications. Eur J Oper Res 250(1):1–29MathSciNetzbMATHCrossRefGoogle Scholar
  37. Guvenir HA, Erel E (1998) Multicriteria inventory classification using a genetic algorithm. Eur J Oper Res 105(1):29–37zbMATHCrossRefGoogle Scholar
  38. Hansen P, Mladenović N, Pérez JAM (2010) Variable neighbourhood search: methods and applications. Ann Oper Res 175(1):367–407MathSciNetzbMATHCrossRefGoogle Scholar
  39. Hatefi SM, Torabi SA (2010) A common weight MCDA-DEA approach to construct composite indicators. Ecol Econ 70(1):114–120CrossRefGoogle Scholar
  40. Hatefi SM, Torabi SA (2015) A common weight linear optimization approach for multicriteria ABC inventory classification. Adv Decis Sci.  https://doi.org/10.1155/2015/645746 MathSciNetzbMATHCrossRefGoogle Scholar
  41. Hatefi SM, Torabi SA, Bagheri P (2013) Multi-criteria ABC inventory classification with mixed quantitative and qualitative criteria. Int J Prod Res 52:776–786CrossRefGoogle Scholar
  42. Hu Q, Chakhar S, Siraj S, Labib A (2017) Spare parts classification in industrial manufacturing using the dominance-based rough set approach. Eur J Oper Res 262(3):1136–1163zbMATHCrossRefGoogle Scholar
  43. Huck N (2009) Pairs selection and outranking: an application to the s&p 100 index. Eur J Oper Res 196(2):819–825CrossRefGoogle Scholar
  44. Ishizaka A, Lolli F, Balugani E, Cavallieri R, Gamberini R (2018) Deasort: assigning items with data envelopment analysis in ABC classes. Int J Prod Econ 199:7–15CrossRefGoogle Scholar
  45. Jabeur K, Guitouni A (2009) A generalized framework for multi-criteria classifiers with automated learning: application on FLIR ship imagery. J Adv Inf Fusion 4(2):75–92Google Scholar
  46. Jamshidi H, Jain A (2008) Multi-criteria ABC inventory classification: with exponential smoothing weights. J Glob Bus Issues 2(1):61Google Scholar
  47. Jemelka M, Chramcov B, Kříž P, Bata T (2017) ABC analyses with recursive method for warehouse. In: 4th International conference on control, decision and information technologies (CoDIT), IEEE, pp 960–963Google Scholar
  48. Jie W, Wen W, Luo YN (2010) Research on the ABC classification based on DEA and fuzzy method for military materials. In: International conference on automation and logistics (ICAL) IEEE, pp 61–64Google Scholar
  49. Kaabi H, Alsulimani T (2018) Novel hybrid multi-objectives multi-criteria ABC inventory classification model. In: Proceedings of the 2018 international conference on computers in management and business, ACM, pp 79–82Google Scholar
  50. Kaabi H, Jabeur K, Enneifer L (2015) Learning criteria weights with topsis method and continuous VNS for multi-criteria inventory classification. Electron Notes Discrete Math 47:197–204MathSciNetzbMATHCrossRefGoogle Scholar
  51. Kaabi H, Jabeur K, Ladhari T (2018) A genetic algorithm-based classification approach for multicriteria ABC analysis. Int J Inf Technol Decis Mak 17(06):1805–1837CrossRefGoogle Scholar
  52. Kabir G, Hasin MA (2011) Comparative analysis of AHP and fuzzy AHP models for multicriteria inventory classification. Int J Fuzzy Log Syst 1:1–16Google Scholar
  53. Kabir G, Hasin MA (2012) Multiple criteria inventory classification using fuzzy analytic hierarchy process. Int J Ind Eng Comput 3:123–132Google Scholar
  54. Kabir G, Sumi RS (2013) Integrating fuzzy delphi with fuzzy analytic hierarchy process for multiple criteria inventory classification. J Eng Proj Prod Manag 1:22–34Google Scholar
  55. Kabir G, Hasin MAA , Khondokar MAH (2011) Fuzzy analytical hierarchy process for multicriteria inventory classification. In: International conference on mechanical engineering (ICME), pp 18–20Google Scholar
  56. Kangas J, Kangas A, Leskinen P, Pykäläinen J (2001) MCDM methods in strategic planning of forestry on state-owned lands in Finland: applications and experiences. J Multi-Criteria Decis Anal 10(5):257–271zbMATHCrossRefGoogle Scholar
  57. Karagiannis G (2018) Partial average cross-weight evaluation for ABC inventory classification. Int Trans Oper Res.  https://doi.org/10.1111/itor.12594
  58. Kartal HB, Cebi F (2013) Support vector machines for multi-attribute ABC analysis. Int J Mach Learn Comput 3(1):154CrossRefGoogle Scholar
  59. Kartal H, Oztekin A, Gunasekaran A, Cebi F (2016) An integrated decision analytic framework of machine learning with multi-criteria decision making for multi-attribute inventory classification. Comput Ind Eng 101:599–613CrossRefGoogle Scholar
  60. Kiris S (2013) Multi-criteria inventory classification by using a fuzzy analytic network process (ANP) approach. INFORMATICA 2:199–217MathSciNetzbMATHGoogle Scholar
  61. Ladhari T, Babai MZ, Lajili I (2016) Multi-criteria inventory classification: new consensual procedures. IMA J Manag Math 27(2):335–351MathSciNetzbMATHCrossRefGoogle Scholar
  62. Lajili I, Babai MZ, Ladhari T (2012) Inventory performance of multi-criteria classification methods: an empirical investigation. In: 9th International conference on modeling, optimization and simulationGoogle Scholar
  63. Lajili I, Ladhari T, Babai MZ (2013) Multi-criteria inventory classification problem: a consensus approach. In: 2013 5th International conference on modeling, simulation and applied optimization (ICMSAO), IEEE, pp 1–6Google Scholar
  64. Li Z, Wu X, Liu F, Fu Y, Chen K (2017) Multicriteria ABC inventory classification using acceptability analysis. Int Trans Oper Res 26:2494–2507MathSciNetCrossRefGoogle Scholar
  65. Liu P, Zhang X (2011) Research on the supplier selection of a supply chain based on entropy weight and improved electre-iii method. Int J Prod Res 49(3):637–646CrossRefGoogle Scholar
  66. Liu J, Liao X, Zhao W, Yang N (2016) A classification approach based on the outranking model for multiple criteria ABC analysis. Omega 61:19–34CrossRefGoogle Scholar
  67. Lolli F, Ishizaka A, Gamberini R (2014) New AHP-based approaches for multi-criteria inventory classification. Int J Prod Econ 156:62–74CrossRefGoogle Scholar
  68. Lolli F, Ishizaka A, Gamberini R, Balugani E, Rimini B (2017) Decision trees for supervised multi-criteria inventory classification. Procedia Manuf 11:1871–1881CrossRefGoogle Scholar
  69. López-Soto D, Yacout S, Angel-Bello F (2016) Root cause analysis of familiarity biases in classification of inventory items based on logical patterns recognition. Comput Ind Eng 93:121–130CrossRefGoogle Scholar
  70. López-Soto D, Angel-Bello F, Yacout S, Alvarez A (2017) A multi-start algorithm to design a multi-class classifier for a multi-criteria ABC inventory classification problem. Expert Syst Appl 81:12–21CrossRefGoogle Scholar
  71. Ma L-C (2012) A two-phase case-based distance approach for multiple-group classification problems. Comput Ind Eng 63(1):89–97CrossRefGoogle Scholar
  72. Mareschal B, Brans JP, Vincke P et al. (1984) Promethee: a new family of outranking methods in multicriteria analysis. Technical report, ULB–Universite Libre de BruxellesGoogle Scholar
  73. Millstein MA, Yang L, Li H (2014) Optimizing ABC inventory grouping decisions. Int J Prod Econ 148:71–80CrossRefGoogle Scholar
  74. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100MathSciNetzbMATHCrossRefGoogle Scholar
  75. Mladenović N, Dražić M, Kovačevic-Vujčić V, Čangalović M (2008) General variable neighborhood search for the continuous optimization. Eur J Oper Res 191(3):753–770MathSciNetzbMATHCrossRefGoogle Scholar
  76. Mohamadghasemi A, Hadi-Vencheh A (2011) Determining the ordering policies of inventory items in class b using if-then rules base. Expert Syst Appl 38(4):3891–3901CrossRefGoogle Scholar
  77. Mohammaditabar D, Ghodsypour SH, O’Brien C (2012) Inventory control system design by integrating inventory classification and policy selection. Int J Prod Econ 140:655–659CrossRefGoogle Scholar
  78. Mousseau V (1995) Eliciting information concerning the relative importance of criteria. In: Advances in multicriteria analysis, Springer, pp 17–43Google Scholar
  79. Mousseau V, Dias L (2004) Valued outranking relations in electre providing manageable disaggregation procedures. Eur J Oper Res 156(2):467–482zbMATHCrossRefGoogle Scholar
  80. Naderpour H, Mirrashid M (2019) Classification of failure modes in ductile and non-ductile concrete joints. Eng Fail Anal 103:361–375CrossRefGoogle Scholar
  81. Ng WL (2007) A simple classifier for multiple criteria ABC analysis. Eur J Oper Res 177:344–353zbMATHCrossRefGoogle Scholar
  82. Opricovic S (1990) Programski paket VIKOR za visekriterijumsko kompromisno rangiranje. In: 17th International symposium on operational research SYM-OP-ISGoogle Scholar
  83. Otay I, Senturk E, Çebi F (2018) An integrated fuzzy approach for classifying slow-moving items. J Enterp Inf Manag 31(4):595–611CrossRefGoogle Scholar
  84. Park J, Bae H, Lim S (2011) Multi-criteria ABC inventory classification using the cross-efficiency method in DEA. J Korean Inst Ind Eng 37:358–366Google Scholar
  85. Park J, Bae H, Bae J (2014) Cross-evaluation-based weighted linear optimization for multi-criteria ABC inventory classification. Comput Ind Eng 76:40–48CrossRefGoogle Scholar
  86. Partovi FY, Anandarajan M (2002) Classifying inventory using an artificial neural network approach. Comput Ind Eng 41(4):389–404CrossRefGoogle Scholar
  87. Partovi FY, Burton J (1993) Using the analytic hierarchy process for ABC analysis. Int J Oper Prod Manag 13(9):29–44CrossRefGoogle Scholar
  88. Podinovskii VV (1994) Criteria importance theory. Math Soc Sci 27(3):237–252MathSciNetCrossRefGoogle Scholar
  89. Puente J, de la Fuente D, Priore P, Pino R (2002) ABC classification with uncertain data. A fuzzy model vs. a probabilistic model. Appl Artif Intell 16(6):443–456CrossRefGoogle Scholar
  90. Ramanathan R (2006) ABC inventory classification with multiple-criteria using weighted linear optimization. Comput Oper Res 33:695–700zbMATHCrossRefGoogle Scholar
  91. Rauf M, Guan Z, Sarfraz S, Mumtaz J, Almaiman S, Shehab E, Jahanzaib M (2018) Multi-criteria inventory classification based on multi-criteria decision-making (MCDM) technique. In: Advances in manufacturing technology XXXII: proceedings of the 16th international conference on manufacturing research, incorporating the 33rd national conference on manufacturing research, p 343Google Scholar
  92. Reid RA (1987) The ABC method in hospital inventory management a practical. Prod Inventory Manag J 28(4):67MathSciNetGoogle Scholar
  93. Rezaei J (2007) A fuzzy model for multi-criteria inventory classification. In: proceedings of 6th International Conference on Analysis of Manufacturing Systems (AMS2007). Lunteren, The Netherlands, pp 167–172Google Scholar
  94. Rezaei J, Dowlatshahi S (2010) A rule-based multi-criteria approach to inventory classification. Int J Prod Res 48:7107–7126zbMATHCrossRefGoogle Scholar
  95. Rezaei J, Salimi N (2013) Optimal ABC inventory classification using interval programming. Int J Syst Sci 46:1944–1952MathSciNetzbMATHCrossRefGoogle Scholar
  96. Rogers M, Bruen M (1998) Choosing realistic values of indifference, preference and veto thresholds for use with environmental criteria within ELECTRE. Eur J Oper Res 107(3):542–551zbMATHCrossRefGoogle Scholar
  97. Rosdi F, Salim SS, Mustafa MB (2019) An FPN-based classification method for speech intelligibility detection of children with speech impairments. Soft Comput 23(7):2391–2408CrossRefGoogle Scholar
  98. Roy B (1978) Algorithme de classement basé sur une représentation floue des préférences en présence de critères multiples. Cahiers du CERO 20(1):3–24zbMATHGoogle Scholar
  99. Saaty TL (1990) The analytic hierarchy process in conflict management. Int J Confl Manag 1:47–68CrossRefGoogle Scholar
  100. Siskos Y, Grigoroudis E, Zopounidis C, Saurais O (1998) Measuring customer satisfaction using a collective preference disaggregation model. J Glob Optim 12(2):175–195MathSciNetzbMATHCrossRefGoogle Scholar
  101. Soylu B, Akyol B (2014) Multi-criteria inventory classification with reference items. Comput Ind Eng 69:12–20CrossRefGoogle Scholar
  102. Stanford RE, Martin W (2007) Towards a normative model for inventory cost management in a generalized ABC classification system. J Oper Res Soc 58(7):922–928zbMATHCrossRefGoogle Scholar
  103. Tavassoli M, Faramarzi GR, Saen RF (2014) Multi-criteria ABC inventory classification using DEA-discriminant analysis to predict group membership of new items. Int J Appl Manag Sci 6(2):171–189CrossRefGoogle Scholar
  104. Teunter RH, Babai MZ, Syntetos AA (2010) ABC classification: service levels and inventory costs. Prod Oper Manag 19(3):343–352CrossRefGoogle Scholar
  105. Teunter RH, Syntetos AA, Babai MZ (2017) Stock keeping unit fill rate specification. Eur J Oper Res 259(3):917–925zbMATHCrossRefGoogle Scholar
  106. Torabi SA, Hatefi SM, Pay BS (2012) ABC inventory classification in the presence of both quantitative and qualitative criteria. Comput Ind Eng 36:530–537CrossRefGoogle Scholar
  107. Tsai C-Y, Yeh S-W (2008) A multiple objective particle swarm optimization approach for inventory classification. Int J Prod Econ 114(2):656–666CrossRefGoogle Scholar
  108. Hadi-Vencheh A (2010) An improvement to multiple criteria ABC inventory classification. Eur J Oper Res 21:962–965zbMATHCrossRefGoogle Scholar
  109. Hadi-Vencheh A, Mohamadghasemi A (2011) A fuzzy AHP-DEA approach for multiple criteria ABC inventory classification. Expert Syst Appl 38:3346–3352CrossRefGoogle Scholar
  110. Vincke P (1992) Multicriteria decision-aid. Wiley, HobokenzbMATHGoogle Scholar
  111. Yu W (1992) Aide multicritère à la décision dans le cadre de la problématique du tri: concepts, méthodes et applications (Doctoral dissertation, Université Paris IX-Dauphine)Google Scholar
  112. Yu MC (2011) Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Syst Appl 38:3416–3421CrossRefGoogle Scholar
  113. Zheng S, Fu Y, Lai KK, Liang L (2017) An improvement to multiple criteria ABC inventory classification using Shannon entropy. J Syst Sci Complex 30(4):857–865MathSciNetzbMATHCrossRefGoogle Scholar
  114. Zhou P, Fan L (2007) A note on multi-criteria ABC inventory classification using weighted linear optimization. Eur J Oper Res 182:1488–1491zbMATHCrossRefGoogle Scholar
  115. Zhu J (2003) Imprecise data envelopment analysis (IDEA): A review and improvement with an application. Eur J Oper Res 144(3):513–529MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Supérieur de Gestion de TunisUniversité de TunisTunisTunisia
  2. 2.Institut Supérieur de Gestion de BizerteUniversité de CarthageBizerteTunisia

Personalised recommendations