Soft Computing

, Volume 23, Issue 24, pp 12937–12950 | Cite as

Monadic pseudo-equality algebras

  • Shokoofeh GhorbaniEmail author


In this paper, we introduce the concept of monadic pseudo-equality algebras and obtain some related properties. We study the relations between monadic pseudo-equality algebras, monadic bounded hoops and monadic pseudo-BCI-algebras. Then, we introduce and study monadic deductive systems and monadic congruences and discuss the relations between them. We use monadic deductive systems to define uniform topology on pseudo-equality algebras and obtain some topological results. Finally, the corresponding logic (monadic invariant pseudo-equality logic) is constructed and the soundness and completeness of this logic are proved based on monadic invariant pseudo-equality algebras.


Monadic pseudo-equality algebra Monadic deductive system Uniform structure Monadic invariant pseudo-equality logic 



The author would like to express her thanks to referees for their comments and suggestions which improved the paper.

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict ofinterest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bezhanisvili G (1999) On geVarieties of monadic Heyting algebras I. Stud Log 61:367–402CrossRefGoogle Scholar
  2. Bosbach B (1966) Komplementäre Halbgruppen, Axiomatik und Arithmetik. Fundam Math 64:257–277MathSciNetCrossRefGoogle Scholar
  3. Cattaneo G (1998) Abstract approximation spaces for rough theories. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 1: methodology and applications. Physica-Verlag, Wurzburg, pp 59–98Google Scholar
  4. Ciungu LC (2014) On pseudo equality algebras. Arch Math Log 53:561–570MathSciNetCrossRefGoogle Scholar
  5. Ciungu LC (2016) Commutative pseudo equality algebras. Soft Comput 21(16):4601–4616CrossRefGoogle Scholar
  6. Ciungu LC (2018) State pseudo equality algebras. J Multi-Valued Log Soft Comput 30(4–6):573–613MathSciNetzbMATHGoogle Scholar
  7. Di Nola A, Grigolia R (2004) On monadic MV-algebras. Ann Pure Appl Log 128:125–139MathSciNetCrossRefGoogle Scholar
  8. Dudek WA, Jun YB (2008) Pseudo-BCI algebras. East Asian Math J 24:187–190zbMATHGoogle Scholar
  9. Dvurečenskij A, Zahiri O (2016) Pseudo equality algebras-revision. Soft Comput 20:2091–2101CrossRefGoogle Scholar
  10. Esteva F, Godo L (2001) Monoidal t-norm-based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst 124:271–288MathSciNetCrossRefGoogle Scholar
  11. Figallo-Orellano A (2016) A topological duality for monadic MV-algebras. Soft Comput 21(23):7119–7123CrossRefGoogle Scholar
  12. Georgescu G, Iorgulescu A (2001) Pseudo-BCK algebras: an extension of BCK-algebras, DMTCS01: combinatorics, computability and logic. Springer, London, pp 97–114zbMATHGoogle Scholar
  13. Grigolia R (2006) Monadic BL-algebras. Georgain Math J 13:267–276MathSciNetzbMATHGoogle Scholar
  14. Halmos RP (1962) Algebraic logic. Chelsea Publ Co, New YorkzbMATHGoogle Scholar
  15. Iorgulescu A (2004) On pseudo-BCK algebras and porims. Sci Math Jpn 10:293–305MathSciNetzbMATHGoogle Scholar
  16. Iséki K (1966) An algebra related with a propositional calculus. Proc Jpn Acad 42:26–29MathSciNetCrossRefGoogle Scholar
  17. Iséki K (1980) On BCI-algebras. Math Semin Notes (Kobe Univ) 8(1):125–130zbMATHGoogle Scholar
  18. Jenei S (2012) Equality algebras. Stud Log 100:1201–1209MathSciNetCrossRefGoogle Scholar
  19. Jenei S, Kóródi L (2013) Pseudo equality algebras. Arch Math Log 52:469–481MathSciNetCrossRefGoogle Scholar
  20. Joshi KD (1997) Introduction to general topology. New Age Publisher, New DelhiGoogle Scholar
  21. Novák V (2011) EQ-algebra-based fuzzy type theory and its extensions. Log J IGPL 19:512–542MathSciNetCrossRefGoogle Scholar
  22. Novák V, De Baets B (2009) EQ-algebras. Fuzzy Sets Syst 160:2956–2978MathSciNetCrossRefGoogle Scholar
  23. Novák V, Dyba M (2011) EQ-logics: non-commutative fuzzy logics based on fuzzy equality. Fuzzy Sets Syst 172:13–32MathSciNetCrossRefGoogle Scholar
  24. Rachunek J, Šalounová D (2008) Monadic bounded commutative residuated l-monoids. Order 25:157–175MathSciNetCrossRefGoogle Scholar
  25. Rachunek J, Šalounová D (2013) Monadic bounded residuated lattices. Order 30:195–210MathSciNetCrossRefGoogle Scholar
  26. Rutledge JD (1959) A preliminary of the infinitely many-valued predicate calculus. Ph.D. Thesis, Cornell UniversityGoogle Scholar
  27. Wang J, Xin X, He P (2018) Monadic bounded hoops. Soft Comput 22:1749–1762CrossRefGoogle Scholar
  28. Xin X, Fu Y, Lai Y, Wang J (2019) Monadic pseudo BCI-algebras and corresponding logics. Soft Comput 23:1499–1510CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pure Mathematics, Faculty of Mathematics and Computer, Mahani Mathematical Research CenterShahid Bahonar University of KermanKermanIran

Personalised recommendations