Advertisement

Soft Computing

, Volume 23, Issue 22, pp 11447–11460 | Cite as

Fixed points of covering upper and lower approximation operators

  • A. A. EstajiEmail author
  • M. Vatandoost
  • R. Pourkhandani
Foundations
  • 61 Downloads

Abstract

Pawlak’s rough set and its extension, covering-based rough set, are important techniques for reasoning in incomplete information systems. In this paper, by studying some results about the Feynman paths, we show that the family of all fixed points of covering upper and lower approximation operators is an atomic frame and a complete lattice, respectively. Then, we find a relation between some major causal operators of relativity theory and covering approximation operators. As a result of this connection, we introduce a Feynman index to classify space–times.

Keywords

Covering-based Rough set Causal structure Space–time Frame 

Notes

Acknowledgements

The authors thank the editor and the referee for their valuable comments and suggestions for improving the paper.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Cegła W, Florek J (2005) Ortho and causal closure as closure operation in the causal logic. Int J Theor Phys 44:11–19.  https://doi.org/10.1007/s10773-005-1430-5 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Cegła W, Florek J (2005) Orthomodular lattices generated by graphs of functions. Commun Math Phys 259:363–366.  https://doi.org/10.1007/s00220-005-1362-1 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Cegła W, Florek J (2006) The covering law in orthomodular lattices generated by graphs of functions. Commun Math Phys 268:853–856.  https://doi.org/10.1007/s00220-006-0116-z MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cegła W, Janccewicz B (2013) Non-modular lattices generated by the causal structure. J Math Phys 54(12):122501–122505.  https://doi.org/10.1063/1.4850855 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Deng T, Chen Y, Xu W, Dai Q (2009) A novel approach to fuzzy rough sets based on a fuzzy covering. Inf Sci 179:2478–2486.  https://doi.org/10.1016/j.ins.2006.11.013 CrossRefGoogle Scholar
  6. Corsini P (1999) Rough sets, fuzzy sets and join spaces, Honorary Volume Dedicated to Prof. Emeritus J. Mittas, (Aristotle, 1999) 1–12Google Scholar
  7. Corsini P, Leoreanu V (2003) Applications of hyperstructure theory, advances in mathematics. Kluwer Academic Publisher, Dordrecht.  https://doi.org/10.1007/978-1-4757-3714-1 CrossRefzbMATHGoogle Scholar
  8. Corsini P, Leoreanu V (2004) Fuzzy sets and join spaces associated with rough sets. Rendiconti del Circolo Matematico di Palermo, Series II, Tomo L I 2004:527–536zbMATHGoogle Scholar
  9. Davvaz B (2008) Approximations in \(n\)-ary algebraic systems. Soft Comput 12(4):409–418.  https://doi.org/10.1007/s00500-007-0174-y CrossRefzbMATHGoogle Scholar
  10. Devlin K (1993) The joy of sets: fundamentals of contemporary set. Springer, New YorkCrossRefGoogle Scholar
  11. Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:191–209.  https://doi.org/10.1080/03081079008935107 CrossRefzbMATHGoogle Scholar
  12. Eghdami H, Estaji AA, Haghdadia T (2018) Fuzzy roughness in Lie algebra by reference point. J Intell Fuzzy Syst 35:887–899.  https://doi.org/10.3233/JIFS-171620 CrossRefGoogle Scholar
  13. Estaji AA, Khodaii S, Bahrami S (2011) On rough set and fuzzy sublattice. Inf Sci 181(18):3981–3994.  https://doi.org/10.1016/j.ins.2011.04.043 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Estaji AA, Hooshmandasl MR, Davvaz B (2012) Rough set theory applied to lattice theory. Inf Sci 200:108–122.  https://doi.org/10.1016/j.ins.2012.02.060 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Estaji AA, Bayati F (2018) On rough sets and hyperlattices. Ratio Mathematica 34:15–33.  https://doi.org/10.23755/rm.v34i0.350 CrossRefGoogle Scholar
  16. Farooq M, Khan A, Davvaz B (2017) Characterizations of ordered semihypergroups by the properties of their intersectional-soft generalized bi-hyperideals, Soft Computing Publish online: 18 March 2017.  https://doi.org/10.1007/s00500-017-2550-6 CrossRefGoogle Scholar
  17. Feng F, Li C, Davvaz B, Ali M Irfan (2010) Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput 14(9):899–911.  https://doi.org/10.1007/s00500-009-0465-6 CrossRefzbMATHGoogle Scholar
  18. Feng T, Zhang SP, Mi JS (2012) The reduction and fusion of fuzzy covering systems based on the evidence theory. Int J Approx Reason 53:87–103.  https://doi.org/10.1016/j.ijar.2011.10.002 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Ghazavi SH, Anvariyeh SM (2017) EL-hyperstructures associated to n-ary relations. Soft Comput 21(19):5841–5850.  https://doi.org/10.1007/s00500-016-2165-3 CrossRefzbMATHGoogle Scholar
  20. Gierz G, Hofmann KH, Keimel K, Lawson JD, Mislove M, Scott DS (2003) Continuous lattices and domains. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Greco S, Matarazzo B, Slowinski R (2001) Rough sets theory for multicriteria decision analysis. Eur J Oper Res 129(1):1–47.  https://doi.org/10.1016/S0377-2217(00)00167-3 CrossRefzbMATHGoogle Scholar
  22. Hawking SW, Ellis GFR (1973) The large scale structure of space-time, Cambridge monographs on mathematical physics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Hawking SW, King AR, McCarthy PJ (1976) A new topology for curved space-time which incorporates the causal, differential, and conformal structures. J Math Phys 17(2):174–181.  https://doi.org/10.1063/1.522874 MathSciNetCrossRefzbMATHGoogle Scholar
  24. Kar S, Purkait S (2017) On k-Regularities in Fuzzy Semihyperrings. Int J Appl Comput Math 3(2):1121–1141.  https://doi.org/10.1007/s40819-016-0166-7 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Kanwal RS, Shabir M (2019) Rough approximation of a fuzzy set in semigroups based on soft relations. Comput Appl Math 38:89.  https://doi.org/10.1007/s40314-019-0851-3 MathSciNetCrossRefzbMATHGoogle Scholar
  26. Kedukodi BS, Kuncham SP, Jagadeesha B (2019) Interval valued L-fuzzy prime ideals, triangular norms and partially ordered groups. Soft Comput 23(3):907–920.  https://doi.org/10.1007/s00500-017-2798-x CrossRefzbMATHGoogle Scholar
  27. Lee JWT, Yeung DS, Tsang ECC (2006) Rough sets and ordinal reducts. Soft Comput 10(1):27–33.  https://doi.org/10.1007/s00500-005-0460-5 CrossRefGoogle Scholar
  28. Li TJ, Leung Y, Zhang WX (2008) Generalized fuzzy rough approximation operators based on fuzzy coverings. Int J Approx Reason 48(3):836–856.  https://doi.org/10.1016/j.ijar.2008.01.006 MathSciNetCrossRefzbMATHGoogle Scholar
  29. Liu G, Sai Y (2009) A comparison of two types of rough sets induced by coverings. Int J Approx Reason 50(3):521–528.  https://doi.org/10.1016/j.ijar.2008.11.001 MathSciNetCrossRefzbMATHGoogle Scholar
  30. Mordeson JN (2001) Rough set theory applied to (fuzzy) ideal theory. Fuzzy Sets Syst 121(2):315–324.  https://doi.org/10.1016/S0165-0114(00)00023-3 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356.  https://doi.org/10.1007/BF01001956 CrossRefzbMATHGoogle Scholar
  32. Picado J, Pultr A (2012) Frames and locales: topology without points, frontiers in mathematics. Springer, BaselCrossRefGoogle Scholar
  33. Penrose R (1965) Gravitational collapse and space–time singularities. Phys Rev Lett 14:57–59.  https://doi.org/10.1103/PhysRevLett.14.57 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Penrose R (1987) Techniques of Differential Topology in Relativity, Society for Industrial and Applied MathematicsGoogle Scholar
  35. Qin K, Pei Z (2005) On the toplogical properties of fuzzy rough set. Fuzzy Sets Syst 151(3):601–613.  https://doi.org/10.1016/j.fss.2004.08.017 CrossRefzbMATHGoogle Scholar
  36. Radzikowska AM, Kerre EE (2002) A comprative study of fuzzy rough sets. Fuzzy Sets Syst 126(2):137–155.  https://doi.org/10.1016/S0165-0114(01)00032-X CrossRefzbMATHGoogle Scholar
  37. Restrepo M, Cornelis C, Gómez J (2014) Duality, conjugacy and adjointness of approximation operators in covering-based rough sets. Int J Approx Reason 55(1):469–485.  https://doi.org/10.1016/j.ijar.2013.08.002 MathSciNetCrossRefzbMATHGoogle Scholar
  38. Saraykar R, Janardhan S (2016) Zeeman-like topologies in special and general theory of relativity. J Mod Phys 7(7):627–641.  https://doi.org/10.4236/jmp.2016.77063 CrossRefGoogle Scholar
  39. She YH, Wang GJ (2009) An axiomatic approach of fuzzy rough sets based on residuated lattices. Comput Math Appl 58(1):189–201.  https://doi.org/10.1016/j.camwa.2009.03.100 MathSciNetCrossRefzbMATHGoogle Scholar
  40. Sorkin RD (December 1990) Spacetime and causal set, in relativity and gravitation: classical and quantum. In: Proceedings of the SILARG VII conference, Cocoyoc, Mexico, pp 150–173Google Scholar
  41. Tiwari SP, Srivastava AK (2013) Fuzzy rough sets, fuzzy preorders and fuzzy topologies. Fuzzy Sets Syst 210(1):63–68.  https://doi.org/10.1016/j.fss.2012.06.001 MathSciNetCrossRefzbMATHGoogle Scholar
  42. Vatandoost M, Estaji AA, Pourkhandani R (2019) A generalized modal logic in causal structures. Theor Comput Sci 768:43–53.  https://doi.org/10.1016/j.tcs.2019.02.006 MathSciNetCrossRefzbMATHGoogle Scholar
  43. Wang P, Li Q (2019) The characterizations of upper approximation operators based on coverings. Soft Comput 23(10):3217–3228.  https://doi.org/10.1007/s00500-018-3197-7 CrossRefzbMATHGoogle Scholar
  44. Yang B, Hu B (2016) A fuzzy covering-based rough set model and its generalization over fuzzy lattice. Inf Sci 367368:463–486.  https://doi.org/10.1016/j.ins.2016.05.053 CrossRefGoogle Scholar
  45. Yang T, Li QG (2010) Reduction about approximation spaces of covering generalized rough sets. Int J Approx Reason 51(3):335–345.  https://doi.org/10.1016/j.ijar.2009.11.001 MathSciNetCrossRefzbMATHGoogle Scholar
  46. Yao Y (1998) Constractive and algebric methods of theory of theory of rough sets. Fuzzy Sets Syst 109(1–4):21–47.  https://doi.org/10.1016/S0020-0255(98)00012-7 CrossRefGoogle Scholar
  47. Yao Y, Yao B (2012) Covering based rough set approximations. Inf Sci 200:91–107.  https://doi.org/10.1016/j.ins.2012.02.065 MathSciNetCrossRefzbMATHGoogle Scholar
  48. Yeung DS, Chen D, Tsang ECC, Lee JWT, Wang X (2005) On the generalization of fuzzy rough sets. IEEE Trans Fuzzy Syst 13(3):343–361.  https://doi.org/10.1109/TFUZZ.2004.841734 CrossRefGoogle Scholar
  49. Zhan J, Liu Q, Zhu W (2017) Another approach to rough soft hemirings and corresponding decision making. Soft Comput 21(13):3769–3780.  https://doi.org/10.1007/s00500-016-2058-5 CrossRefzbMATHGoogle Scholar
  50. Zhu KY (2019) Novel soft fuzzy rough rings (ideals) of rings and their application in decision making. Soft Comput 23(9):3167–3189.  https://doi.org/10.1007/s00500-017-2967-y CrossRefzbMATHGoogle Scholar
  51. Zhu P (2011) Covering rough sets based on neighborhoods: an approach without using neighborhoods. Int J Approx Reason 52(3):461–472.  https://doi.org/10.1016/j.ijar.2010.10.005 MathSciNetCrossRefzbMATHGoogle Scholar
  52. Zhu W (2009) Relationship among basic concepts in covering-based rough sets. Inf Sci 179(14):2478–2486.  https://doi.org/10.1016/j.ins.2009.02.013 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer SciencesHakim Sabzevari UniversitySabzevarIran

Personalised recommendations