Advertisement

Soft Computing

, Volume 23, Issue 24, pp 13297–13307 | Cite as

Application of fuzzy ordered weighted geometric averaging (FOWGA) operator for project delivery system decision-making

  • Xun LiuEmail author
  • Hong Liu
Methodologies and Application
  • 52 Downloads

Abstract

Appropriate project delivery model is one of the key factors affecting a project’s success. Most decision-making methods of project delivery are based on vague qualitative indicators. However, a numerical scale is usually unable to effectively and accurately reflect the preferences of decision-makers. Scholars have found that applying the fuzzy set theory and using the fuzzy ordered weighted geometric averaging (FOWGA) operator for project delivery system (PDS) decision could reduce the judgment information losing to a certain extent and improve the objectivity and fairness of group decision-making. In this study, we further addressed the decision method and procedure for PDS decision by using the FOWGA operator and demonstrated the mode selection method as well. The results demonstrated that the method can overcome the current drawback of subjectivity of the project delivery decision method, better solve the decision-making information losing problem during assembling process and further reflect the priority of the PDS so as to improve the efficiency of the group decision.

Keywords

Project delivery system (PDS) Fuzzy ordered weighted geometric averaging operator (FOWGA) Triangular fuzzy number Group decision method 

Notes

Acknowledgements

The authors would like to appreciate the reviewers for all helpful comments, and to thank the Fundamental Research Funds for the Central Universities (Grant Nos. 331711105, 331711203) and the National Natural Science Foundation of China (NSFC 51708381) for their supports.

Compliance with ethical standards

Conflict of interest

Author Xun Liu declares that he has no conflict of interest. Author Hong Liu declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Al Khalil MI (2002) Selecting the appropriate project delivery method using AHP. Int J Proj Manag 20(6):469–474.  https://doi.org/10.1016/S0263-7863(01)00032-1 CrossRefGoogle Scholar
  2. Alhazmi T, McCaffer R (2000) Project procurement system selection model. J Constr Eng Manag 126(3):176–184.  https://doi.org/10.1061/(asce)0733-9364(2000)126:3(176) CrossRefGoogle Scholar
  3. Arnold K, Madan MG (1985) Introduction to fuzzy arithmetic: theory and applications. Van Nostrand Reinhold Company, New YorkzbMATHGoogle Scholar
  4. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Set Syst 20(1):87–96.  https://doi.org/10.1016/S0165-0114(86)80034-3 CrossRefzbMATHGoogle Scholar
  5. Chan CTW (2007) Fuzzy procurement selection model for construction projects. Constr Manag Econ 25(6):611–618.  https://doi.org/10.1080/01446190701209933 CrossRefGoogle Scholar
  6. Chan APC, Ho DCK, Tam CM (2001a) Design and build project success factors: multivariate analysis. J Constr Eng Manag 127(2):93–100.  https://doi.org/10.1061/(asce)0733-9364(2001)127:2(93) CrossRefGoogle Scholar
  7. Chan APC, Yung EHK, Lam PTI, Tam CM, Cheung SO (2001b) Application of Delphi method in selection of procurement systems for construction projects. Constr Manag Econ 19(7):699–718.  https://doi.org/10.1080/01446190110066128 CrossRefGoogle Scholar
  8. Chen YQ, Lu H, Lu W, Zhang N (2010) Analysis of project delivery systems in Chinese construction industry with data envelopment analysis (DEA). Eng Constr Arch Manag 17(6):598–614.  https://doi.org/10.1108/09699981011090215 CrossRefGoogle Scholar
  9. Chen YQ, Liu JY, Li B, Lin B (2011) Project delivery system selection of construction projects in China. Expert Syst Appl 38(5):5456–5462.  https://doi.org/10.1016/j.eswa.2010.10.008 CrossRefGoogle Scholar
  10. Cheung SO, Lam TI, Wan YW, Lam KC (2001) Improving objectivity in procurement selection. J Manag Eng 17(3):132–139.  https://doi.org/10.1061/(asce)0742-597x(2001)17:3(132) CrossRefGoogle Scholar
  11. Groton JP, Smith GA (1998) Feature: weighing the options. J Manag Eng 14(6):69–72. http://doi.org/10.1061/(ASCE)0742-597X CrossRefGoogle Scholar
  12. Gransberg DD, Dillon WD, Reynolds L, Boyd J (1999) Quantitative analysis of partnered project performance. J Constr Eng Manag 125(3):161–166.  https://doi.org/10.1061/(asce)0733-9364(1999)125:3(161) CrossRefGoogle Scholar
  13. Herrera-Viedma E, Cordón O, Luque M, Lopez AG, Muñoz AM (2003) A model of fuzzy linguistic IRS based on multi-granular linguistic information. Int J Approx Reason 34(2–3):221–239.  https://doi.org/10.1016/j.ijar.2003.07.009 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Hong HK, Kim JS, Kim T, Leem B (2008) The effect of knowledge on system integration project performance. Ind Manag Data Syst 108(3):385–404.  https://doi.org/10.1108/02635570810858787 CrossRefGoogle Scholar
  15. Ibbs W, Chih YY (2011) Alternative methods for choosing an appropriate project delivery system (PDS). Facilities 29(13/14):527–541.  https://doi.org/10.1108/02632771111178418 CrossRefGoogle Scholar
  16. Ibbs CW, Kwak YH, Ng T, Odabasi A (2003) Project delivery systems and project change: quantitative analysis. J Constr Eng Manag 129(4):382–387.  https://doi.org/10.1061/(asce)0733-9364(2003)129:4(382) CrossRefGoogle Scholar
  17. Konchar M, Sanvido V (1998) Comparison of US project delivery systems. J Constr Eng Manag 124(6):435–444.  https://doi.org/10.1061/(asce)0733-9364(1998)124:6(435) CrossRefGoogle Scholar
  18. Kumaraswamy MM, Dissanayaka SM (2001) Developing a decision support system for building project procurement. Build Environ 36(3):337–349.  https://doi.org/10.1016/s0360-1323(00)00011-1 CrossRefGoogle Scholar
  19. Laedre O, Austeng K, Haugen T, Klakegg O (2006) Procurement routes in public building and construction projects. J Constr Eng Manag 132(7):689–696.  https://doi.org/10.1061/(asce)0733-9364(2006)132:7(689) CrossRefGoogle Scholar
  20. Li H, Arditi D, Wang Z (2013) Factors that affect transaction costs in construction projects. J Constr Eng Manag 139(1):60–68.  https://doi.org/10.1061/(asce)co.1943-7862.0000573 CrossRefGoogle Scholar
  21. Ling FYY, Liu M (2004) Using neural network to predict performance of design-build projects in Singapore. Build Environ 39(10):1263–1274.  https://doi.org/10.1016/j.buildenv.2004.02.008 CrossRefGoogle Scholar
  22. Ling FYY, Chan SL, Chong E, Ee LP (2004) Predicting performance of design-build and design-bid-build projects. J Constr Eng Manag 130(1):75–83.  https://doi.org/10.1061/(asce)0733-9364(2004)130:1(75) CrossRefGoogle Scholar
  23. Liu B, Huo T, Wang X, Shen Q, Chen Y (2013) The decision model of the intuitionistic fuzzy group bid evaluation for urban infrastructure projects considering social costs. Can J Civ Eng 40(3):263–273.  https://doi.org/10.1139/cjce-2012-0283 CrossRefGoogle Scholar
  24. Liu B, Huo T, Shen Q, Yang Z, Meng J, Xue B (2014) Which owner characteristics are key factors affecting project delivery system decision making? Empirical analysis based on the rough set theory. J Manag Eng 31(4):1–12.  https://doi.org/10.1061/(asce)ME.1943-5479.0000298 CrossRefGoogle Scholar
  25. Lo SC, Chao Y (2007) Efficiency assessment of road project delivery models. In: AIP conference proceedings. AIP Publishing.  https://doi.org/10.1063/1.2835911
  26. Love PED, Skitmore M, Earl G (1998) Selecting a suitable procurement method for a building project. Constr Manag Econ 16(2):221–233.  https://doi.org/10.1080/014461998372501 CrossRefGoogle Scholar
  27. Luu DT, Ng ST, Chen SE (2003a) Parameters governing the selection of procurement system—an empirical survey. Eng Constr Arch Manag 10(3):209–218.  https://doi.org/10.1108/09699980310478458 CrossRefGoogle Scholar
  28. Luu DT, Ng ST, Chen SE (2003b) A case-based procurement advisory system for construction. Adv Eng Softw 34(7):429–438.  https://doi.org/10.1016/s0965-9978(03)00043-7 CrossRefGoogle Scholar
  29. Luu DT, Ng ST, Chen SE (2005) Formulating procurement selection criteria through case-based reasoning approach. J Comput Civ Eng 19(3):269–276.  https://doi.org/10.1061/(asce)0887-3801(2005)19:3(269) CrossRefGoogle Scholar
  30. Mafakheri F, Dai L, Slezak D, Nasiri F (2007) Project delivery system selection under un-certainty: multicriteria multilevel decision aid model. J Manag Eng 23(4):200–206.  https://doi.org/10.1061/(asce)0742-597X(2007)23:4(200) CrossRefGoogle Scholar
  31. Mahdi IM, Alreshaid K (2005) Decision support system for selecting the proper project delivery method using analytical hierarchy process (AHP). Int J Proj Manag 23(7):564–572.  https://doi.org/10.1016/j.ijproman.2005.05.007 CrossRefGoogle Scholar
  32. Masterman J, Duff A (1994) The selection of building procurement systems by client organizations. In: Proceedings of the 10th annual ARCOM conference. Loughborough University of TechnologyGoogle Scholar
  33. Mollaoglu-Korkmaz S, Swarup L, Riley D (2013) Delivering sustainable, high-performance buildings: influence of project delivery methods on integration and project outcomes. J Manag Eng 29(1):71–78.  https://doi.org/10.1061/(asce)me.1943-5479.0000114 CrossRefGoogle Scholar
  34. Mostafavi A, Karamouz M (2010) Selecting appropriate project delivery system: fuzzy approach with risk analysis. J Constr Eng Manag 136(8):923–930.  https://doi.org/10.1061/(asce)CO.1943-7862.0000190 CrossRefGoogle Scholar
  35. Naoum SG (1994) Critical analysis of time and cost of management and traditional contracts. J Constr Eng Manag 120(4):687–705.  https://doi.org/10.1061/(asce)0733-9364(1994)120:4(687) CrossRefGoogle Scholar
  36. Ng ST, Luu DT, Chen SE, Lam KC (2002) Fuzzy membership functions of procurement selection criteria. Constr Manag Econ 20(3):285–296.  https://doi.org/10.1080/01446190210121288 CrossRefGoogle Scholar
  37. Ng T, Luu C, Skitmore M (2012) Capitalising experiential knowledge for guiding construction procurement selection. Austr J Constr Econ Build 5(1):32–40.  https://doi.org/10.5130/ajceb.v5i1.2941 CrossRefGoogle Scholar
  38. Ojiako U, Johansen E, Greenwood D (2008) A qualitative re-construction of project measurement criteria. Ind Manag Data Syst 108(3):405–417.  https://doi.org/10.1108/02635570810858796 CrossRefGoogle Scholar
  39. Oyetunji AA, Anderson SD (2006) Relative effectiveness of project delivery and contract strategies. J Constr Eng Manag 132(1):3–13.  https://doi.org/10.1061/(asce)0733-9364(2006)132:1(3) CrossRefGoogle Scholar
  40. Ribeiro FL (2001) Project delivery system selection: a case-based reasoning framework. Log Inf Manag 14(5/6):367–376.  https://doi.org/10.1108/EUM0000000006248 CrossRefGoogle Scholar
  41. Rwelamila PD, Meyer C (1999) Appropriate or default project procurement systems? Cost Eng 41(9):40–44Google Scholar
  42. Skitmore R, Marsden D (1988) Which procurement system? Towards a universal procurement selection technique. Constr Manag Econ 6(1):71–89.  https://doi.org/10.1080/01446198800000008 CrossRefGoogle Scholar
  43. Songer AD, Molenaar KR (1996) Selecting design-build: public and private sector owner attitudes. J Manag Eng 12(6):47–53.  https://doi.org/10.1061/(asce)0742-597x(1996)12:6(47) CrossRefGoogle Scholar
  44. Tan C, Chen X (2016) Generalized archimedean intuitionistic fuzzy averaging aggregation operators and their application to multicriteria decision-making. Int J Inf Technol Decis 15(2):311–352.  https://doi.org/10.1142/S0219622016500048 CrossRefGoogle Scholar
  45. Torra V (2004) OWA operators in data modeling and reidentification. IEEE Trans Fuzzy Syst 12(5):652–660.  https://doi.org/10.1109/TFUZZ.2004.834814 CrossRefGoogle Scholar
  46. Touran A, Gransberg DD, Molenaar KR, Ghavamifar K (2011) Selection of project delivery method in transit: drivers and objectives. J Manag Eng 27(1):21–27.  https://doi.org/10.1061/(asce)me.1943-5479.0000027 CrossRefGoogle Scholar
  47. Xu Z (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15(6):1179–1187.  https://doi.org/10.1109/TFUZZ.2006.890678 CrossRefGoogle Scholar
  48. Xu Z (2016) Additive intuitionistic fuzzy aggregation operators based on fuzzy measure. Int J Uncertain Fuzzy 24(1):1–12.  https://doi.org/10.1142/S021848851650001X MathSciNetCrossRefzbMATHGoogle Scholar
  49. Xu Z, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35(4):417–433.  https://doi.org/10.1080/03081070600574353 MathSciNetCrossRefzbMATHGoogle Scholar
  50. Yager RR (1988) On ordered weighted averaging aggregation operations in multicriteria decision making. IEEE Trans Syst Man Cybern 18(1):183–190CrossRefGoogle Scholar
  51. Yager RR (1995) An approach to ordinal decision making. Int J Approx Reason 12(3):237–261.  https://doi.org/10.1016/0888-613X(94)00035-2 MathSciNetCrossRefzbMATHGoogle Scholar
  52. Yager RR, Kreinovich V (1999) Decision making under interval probabilities. Int J Approx Reason 22(3):195–215.  https://doi.org/10.1016/S0888-613X(99)00028-6 MathSciNetCrossRefzbMATHGoogle Scholar
  53. Zhou W, Xu Z (2017) Extreme intuitionistic fuzzy weighted aggregation operators and their applications in optimism and pessimism decision-making processes. J Intell Fuzzy Syst 32(1):1129–1138.  https://doi.org/10.3233/JIFS-16516 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil EngineeringSuzhou University of Science and TechnologySuzhouChina
  2. 2.School of Environmental Science and EngineeringSuzhou University of Science and TechnologySuzhouChina

Personalised recommendations