Advertisement

Water cycle algorithm for optimal overcurrent relays coordination in electric power systems

  • Attia A. El-FerganyEmail author
  • Hany M. Hasanien
Methodologies and Application

Abstract

The coordination of overcurrent relays in interconnected mesh systems with many sources can be formulated as an optimization problem. Different conventional and heuristic algorithm-based optimization procedures have been presented to deal with this nonlinear highly constrained optimization problem. This paper presents an attempt to apply water cycle algorithm (WCA) in order to optimally deal with this coordination problem. The design variables contain the time dial, pickup current, and type of inverse characteristic of each relay. The viability of the proposed method is compared to other competing methods for different interconnected mesh systems including distributed generation units such as the 15-bus system. For obtaining a realistic study, the proposed WCA method is tested in solving the coordination problem for a detailed IEEE 30-bus system, which involves 111 industrial commercial relays type SEPAM-2000 and 333 design variables within the search space along with 726 inequality constraints. The IEEE 30-bus system is modeled using the Electrical Transient Analyzer Program. The strength of the WCA based on methodology is extensively confirmed using the simulation results and comprehensive comparisons.

Keywords

Overcurrent relays Optimization methods Power system relay coordination and relay pairs Distributed generations 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adelnia F, Moravej Z, Farzinfar M (2015) A new formulation for coordination of directional overcurrent relays in interconnected networks. Int Trans Electr Energy Syst 25(1):120–137.  https://doi.org/10.1002/etep.1828 Google Scholar
  2. Alam MN, Das B, Pant V (2016) An interior point method based protection coordination scheme for directional overcurrent relays in meshed networks. Int J Electr Power Energy Syst 81:153–164.  https://doi.org/10.1016/j.ijepes.2016.02.012 Google Scholar
  3. Albasri FA, Alroomi AR, Talaq JH (2015) Optimal coordination of directional overcurrent relays using biogeography-based optimization algorithms. IEEE Trans Power Deliv 30(4):1810–1820.  https://doi.org/10.1109/TPWRD.2015.2406114 Google Scholar
  4. Amraee T (2012) Coordination of directional overcurrent relays using seeker algorithm. IEEE Trans Power Deliv 27(3):1415–1422.  https://doi.org/10.1109/TPWRD.2012.2190107 Google Scholar
  5. Azari A, Akhbari M (2015) Optimal coordination of directional overcurrent relays in distribution systems based on network splitting. Int Trans Electr Energy Syst 25(10):2310–2324.  https://doi.org/10.1002/etep.1962 Google Scholar
  6. Beiranvand V, Warren Hare W, Yves Lucet Y (2017) Best practices for comparing optimization algorithms. Optim Eng 18(4):815–848.  https://doi.org/10.1007/s11081-017-9366-1 MathSciNetzbMATHGoogle Scholar
  7. Bouchekara HRE-H, Zellagui M, Abido MA (2016) Coordination of directional overcurrent relays using the backtracking search algorithm. J Electr Syst 12(2):387–405Google Scholar
  8. Camacho-Gómez C, Jiménez-Fernández S, Mallol-Poyato R, Del Ser Javier, Salcedo-Sanz S (2018) Optimal design of Microgrid’s network topology and location of the distributed renewable energy resources using the Harmony Search algorithm. Soft Comput.  https://doi.org/10.1007/s00500-018-3300-0 Google Scholar
  9. Chattopadhyay B, Sachdev MS, Sidhu TS (1996) An online relay coordination algorithm for adaptive protection using linear programming technique. IEEE Trans Power Deliv 11(1):165–173.  https://doi.org/10.1109/61.484013 Google Scholar
  10. Costa MH, Saldanha RR, Ravetti MG, Carrano EG (2017) Robust coordination of directional overcurrent relays using a metaheuristic algorithm. IET Gener Transm Distrib 11(2):464–474.  https://doi.org/10.1049/iet-gtd.2016.1010 Google Scholar
  11. Electrical Transient Analyzer Program (ETAP) Version 16.00 (2017) http://www.etap.com. Accessed 13 October 2017
  12. El-Fergany AA (2015) Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm. Int J Electr Power Syst 64:1197–1205.  https://doi.org/10.1016/j.ijepes.2014.09.020 Google Scholar
  13. El-Fergany A (2016a) Optimal directional digital overcurrent relays coordination and arc-flash hazard assessments in meshed networks. Int Trans Electr Energy Syst 26(1):134–154.  https://doi.org/10.1002/etep.2073 Google Scholar
  14. El-Fergany AA (2016b) Multi-objective allocation of multi-type distributed generators along distribution networks using backtracking search algorithm and fuzzy expert rules. Electric Power Compon Syst 44(3):252–267.  https://doi.org/10.1080/15325008.2015.1102989 Google Scholar
  15. El-Fergany A, Hasanien HM (2017) Optimized settings of directional overcurrent relays in meshed power networks using stochastic fractal search algorithm. Int Trans Electr Energy Syst 27(11):e2395.  https://doi.org/10.1002/etep.2395 Google Scholar
  16. Elhameed MA, El-Fergany AA (2016) Water cycle algorithm-based load frequency controller for interconnected power systems comprising non-linearity. IET Gener Transm Distrib 10(15):3950–3961.  https://doi.org/10.1049/iet-gtd.2016.0699 Google Scholar
  17. Elhameed MA, El-Fergany AA (2017) Water cycle algorithm-based economic dispatcher for sequential and simultaneous objectives including practical constraints. Appl Soft Comput 58:145–154.  https://doi.org/10.1016/j.asoc.2017.04.046 Google Scholar
  18. Eskandar H, Sadollah A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166.  https://doi.org/10.1016/j.compstruc.2012.07.010 Google Scholar
  19. Hadjaissa A, Ameur K, Mohamed Boutoubat M (2018) A WCA-based optimization of a fuzzy sliding-mode controller for stand-alone hybrid renewable power system. Soft Comput.  https://doi.org/10.1007/s00500-018-3415-3 Google Scholar
  20. Hasanien HM (2018) Transient stability augmentation of a wave energy conversion system using a water cycle algorithm-based multi-objective optimal control strategy. IEEE Trans Ind Inform.  https://doi.org/10.1109/tii.2018.2871098 Google Scholar
  21. Hasanien HM, Matar M (2018) Water cycle algorithm-based optimal control strategy for efficient operation of an autonomous microgrid. IET Gener Transm Distrib 12(21):5739–5746.  https://doi.org/10.1049/iet-gtd.2018.5715 Google Scholar
  22. Huchel L, Zeineldin HH (2016) Planning the coordination of directional overcurrent relays for distribution systems considering DG. IEEE Trans Smart Grid 7(3):1642–1649.  https://doi.org/10.1109/TSG.2015.2420711 Google Scholar
  23. Maancer N, Mahdad B, Srairi K, Hamed M, Hadji B (2015) Optimal coordination of directional overcurrent relays using PSO-TVAC. Energy Proc 74:1239–1247.  https://doi.org/10.1016/j.egypro.2015.07.768 Google Scholar
  24. Mahari A, Seyedi H (2013) An analytic approach for optimal coordination of overcurrent relays. IET Gener Transm Distrib 7(7):674–680.  https://doi.org/10.1049/iet-gtd.2012.0721 Google Scholar
  25. Moirangthem J, Krishnan KR, Dash SS, Ramaswami R (2013) Adaptive differential evolution algorithm for solving non-linear coordination problem of directional overcurrent relays. IET Gener Transm Distrib 7(4):329–336.  https://doi.org/10.1049/iet-gtd.2012.0110 Google Scholar
  26. Papaspiliotopoulos VA, Korres GN, Maratos NG (2017) A novel quadratically constrained quadratic programming method for optimal coordination of directional overcurrent relays. IEEE Trans Power Deliv 32(1):3–10.  https://doi.org/10.1109/TPWRD.2015.2455015 Google Scholar
  27. Pavlatos C, Vita V, Ekonomou L (2015) Syntactic pattern recognition of power system signals. In: Proceedings of the 19th WSEAS international conference on systems (part of CSCC ‘15), Zakynthos Island, Greece, pp 73–77Google Scholar
  28. Power systems test case archive, 30-bus test case (2018) https://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm. Accessed 5 October 2018
  29. Protective relay data sheet (2018) http://mt.schneider-electric.be/OP_MAIN/Sepam/3140750UK.pdf. Accessed 5 October 2018
  30. Quadri IA, Bhowmick S, Joshi D (2018) A hybrid teaching–learning-based optimization technique for optimal DG sizing and placement in radial distribution systems. Soft Comput.  https://doi.org/10.1007/s00500-018-3544-8 Google Scholar
  31. Radosavljević J, Jevtić M (2016) Hybrid GSA-SQP algorithm for optimal coordination of directional overcurrent relays. IET Gener Transm Distrib 10(8):1928–1937.  https://doi.org/10.1049/iet-gtd.2015.1223 Google Scholar
  32. Saberi H, Amraee T (2017) Coordination of directional over-current relays in active distribution networks using generalized benders decomposition. IET Gener Transm Distrib 11(16):4078–4086.  https://doi.org/10.1049/iet-gtd.2017.0434 Google Scholar
  33. Sadollah A, Eskandar H, Ardeshir Bahreininejad A, Joong Hoon Kim JH (2015) Water cycle algorithm for solving multi-objective optimization problems. Soft Comput 19(9):2587–2603.  https://doi.org/10.1007/s00500-014-1424-4 Google Scholar
  34. Saha D, Datta A, Das P (2016) Optimal coordination of directional overcurrent relays in power systems using symbiotic organism search optimisation technique. IET Gener Transm Distrib 10(11):2681–2688.  https://doi.org/10.1049/iet-gtd.2015.0961 Google Scholar
  35. Saleh KA, Zeineldin HH, Al-Hinai A, El-Saadany EF (2015) Optimal coordination of directional overcurrent relays using a new time–current–voltage characteristic. IEEE Trans Power Deliv 30(2):537–544.  https://doi.org/10.1109/TPWRD.2014.2341666 Google Scholar
  36. Shih MY, Salazar CAC, Enríquez AC (2015) Adaptive directional over-current relay coordination using ant colony optimisation. IET Gener Transm Distrib 9(14):2040–2049.  https://doi.org/10.1049/iet-gtd.2015.0394 Google Scholar
  37. Shih MY, Enríquez AC, Hsiao T-Y, Treviño LMT (2017) Enhanced differential evolution algorithm for coordination of directional overcurrent relays. Electr Power Syst Res 143:365–375.  https://doi.org/10.1016/j.epsr.2016.09.011 Google Scholar
  38. Singh M, Panigrahi BK, Abhyankar AR (2013) Optimal coordination of electro-mechanical based overcurrent relays using artificial bee colony algorithm. Int J Bio Inspired Comput 5(5):267–280.  https://doi.org/10.1504/IJBIC.2013.057196 Google Scholar
  39. Srivastava A, Tripathi JM, Mohanty SR, Panda B (2016) Optimal over-current relay coordination with distributed generation using hybrid particle swarm optimization-gravitational search algorithm. Electr Power Compon Syst 44(5):506–517.  https://doi.org/10.1080/15325008.2015.1117539 Google Scholar
  40. Thakur M, Kumar A (2016) Optimal coordination of directional over current relays using a modified real coded genetic algorithm: a comparative study. Int J Electr Power Energy Syst 82:484–495.  https://doi.org/10.1016/j.ijepes.2016.03.036 Google Scholar
  41. Tjahjono A, Anggriawan DO, Faizin AK, Priyadi A, Pujiantara M, Taufik J, Purnomo MH (2017) Adaptive modified firefly algorithm for optimal coordination of overcurrent relays. IET Gener Transm Distrib 11(10):2575–2585.  https://doi.org/10.1049/iet-gtd.2016.1563 Google Scholar
  42. Urdaneta AJ, Restrepo H, Marquez S, Sanchez J (1999) Coordination of directional relay timing using linear programming. IEEE Trans Power Deliv 1(1):122–129.  https://doi.org/10.1109/61.484008 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical Power and Machines Department, Faculty of EngineeringZagazig UniversityZagazig CityEgypt
  2. 2.Electrical Power and Machines Department, Faculty of EngineeringAin Shams UniversityCairoEgypt

Personalised recommendations