Soft Computing

, Volume 23, Issue 21, pp 10983–10999 | Cite as

An empirical model of adaptive cloud resource provisioning with speculation

  • R. Leena SriEmail author
  • N. Balaji
Methodologies and Application


Cloud computing is a utility model that offers everything as a service and supports dynamical resource provisioning and auto-scaling in data center. The proper load balancing and dynamic resource provisioning improves cloud performance and attracts the cloud users. This impacts a need for adaptive and automated provisioning of resources, aligned with clients’ Service Level Agreement (SLA) amidst the time variant cloud environment. The focus of our work is to study how speculative analysis can be used to predict exact resources for an application, whose accuracy demands solution for under/over-utilization of the resource. We have tested our simulator with varying resource load and proved that our system reduces resource allocation latencies and SLA violations. Experimental results show that our proposed model offers more adaptive resource provisioning, as compared to heuristic and other machine learning algorithms. Our experimental results demonstrate adaptive resource allocation over customer-driven service management, under the rapidly changing requirements of cloud computing.


Cloud performance analysis Automated resource provision Framework design and analysis Speculation 


Compliance with ethical standards

Conflict of interest

This is to certify that the both authors of this paper have no conflict of interest in publishing this paper. We assure that we will abide the terms and conditions of the journal.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abbadi IM, Ruan A (2013) Towards trustworthy resource scheduling in clouds. IEEE Trans Inf Forensics Secur 8(6):973–984CrossRefGoogle Scholar
  2. Ali-Eldin A, Tordsson J, Elmroth E (2012) An adaptive hybrid elasticity controller for cloud infrastructures. In: 2012 IEEE network operations and management symposium (NOMS). IEEEGoogle Scholar
  3. Ali-Eldin J, Tordsson E, Elmroth M Kihl (2013) Workload classification for efficient auto-scaling of cloud resources. Tech Rep 2013:2005Google Scholar
  4. Aljazzaf ZM (2015) Modeling and measuring the quality of online services. Kuwait J Sci 42(3):134–157MathSciNetGoogle Scholar
  5. Al-Sayed MM, Khattab S, Omara FA (2016) Prediction mechanisms for monitoring state of cloud resources using Markov chain model. J Parallel Distrib Comput 96:163–171CrossRefGoogle Scholar
  6. Bahrpeyma F, Haghighi H, Zakerolhosseini A (2016) A bipolar resource management framework for resource provisioning in Cloud’s virtualized environment. Appl Soft Comput 46:487–500CrossRefGoogle Scholar
  7. Bataineh MH (2012) Artificial neural network for studying human performance, Msc. Thesis. The University of IOWA, IOWA, USA Google Scholar
  8. Buyya R, Beloglazov A, Abawajy J (2010) Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges. arXiv:1006.0308
  9. Candeia D, Santos RA, Lopes R (2015) Business-driven long-term capacity planning for SaaS applications. IEEE Trans Cloud Comput 3(3):290–303CrossRefGoogle Scholar
  10. Chandra A, Gong W, Shenoy P (2003) Dynamic resource allocation for shared data centers using online measurements. In: International workshop on quality of service. Springer, Berlin, pp 381–398Google Scholar
  11. Chard K, Bubendorfer K (2013) High performance resource allocation strategies for computational economies. IEEE Trans Parallel Distrib Syst 24(1):72–84CrossRefGoogle Scholar
  12. Chen G, He W, Liu J, Nath S, Rigas L, Xiao L, Zhao F, (2015) Energy-aware server provisioning and load dispatching for connection-intensive internet services. In: NSDI, vol 8. pp 337–350Google Scholar
  13. Fard HM, Prodan R, Fahringer T (2013) A truthful dynamic workflow scheduling mechanism for commercial multicloud environments. IEEE Trans Parallel Distrib Syst 24(6):1203–1212CrossRefGoogle Scholar
  14. Garg SK, Buyya R (2011) Networkcloudsim: modelling parallel applications in cloud simulations. In: 2011 Fourth IEEE international conference on utility and cloud computing (UCC). IEEE, pp 105–113Google Scholar
  15. Gong Z, Gu X, Wilkes J (2010) Press: predictive elastic resource scaling for cloud systems. In: 2010 International conference on network and service management (CNSM). IEEE, pp 9–16Google Scholar
  16. Goudarzi H, Pedram M (2011) Multi-dimensional SLA-based resource allocation for multi-tier cloud computing systems. In: 2011 IEEE international conference on cloud computing (CLOUD). IEEE, pp 324–331Google Scholar
  17. Huber N, von Quast M, Hauck M, Kounev S (2011) Evaluating and modeling virtualization performance overhead for cloud environments. In: CLOSER. pp 563–573Google Scholar
  18. Hussain H, Malik SUR, Hameed A, Khan SU, Bickler G, Min-Allah N, Qureshi MB, Zhang L, Yongji W, Ghani N, Kolodziej J (2013) A survey on resource allocation in high performance distributed computing systems. Parallel Comput 39(11):709–736MathSciNetCrossRefGoogle Scholar
  19. Iosup A, Ostermann S, Yigitbasi MN, Prodan R, Fahringer T, Epema D (2011) Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans Parallel Distrib Syst 22(6):931–945CrossRefGoogle Scholar
  20. Islam S, Keung J, Lee K, Liu A (2012) Empirical prediction models for adaptive resource provisioning in the cloud. Future Gener Comput Syst 28(1):155–162CrossRefGoogle Scholar
  21. Jiang Y, Perng CS, Li T, Chang RN (2013) Cloud analytics for capacity planning and instant vm provisioning. IEEE Trans Netw Serv Manag 10(3):312–325CrossRefGoogle Scholar
  22. Khanghahi N, Ravanmehr R (2013) Cloud computing performance evaluation: issues and challenges. Comput 5(1):29–41Google Scholar
  23. Koch F, Assunção MD, Cardonha C, Netto MA (2016) Optimising resource costs of cloud computing for education. Future Gener Comput Syst 55:473–479CrossRefGoogle Scholar
  24. Lee WY (2012) Energy-efficient scheduling of periodic real-time tasks on lightly loaded multicore processors. IEEE Trans Parallel Distrib Syst 23(3):530–537CrossRefGoogle Scholar
  25. Lee YC, Zomaya AY (2011) Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans Parallel Distrib Syst 22(8):1374–1381CrossRefGoogle Scholar
  26. Li C (2012) Optimal resource provisioning for cloud computing environment. J Supercomput 62(2):989–1022CrossRefGoogle Scholar
  27. Li H, Xin M (2012) An approach for cloud resource risk prediction. Procedia Eng 29:3292–3296CrossRefGoogle Scholar
  28. Liang Q, Zhang J, Zhang YH, Liang JM (2014) The placement method of resources and applications based on request prediction in cloud data center. Inf Sci 279:735–745CrossRefGoogle Scholar
  29. Magalhaes D, Calheiros RN, Buyya R, Gomes DG (2015) Workload modeling for resource usage analysis and simulation in cloud computing. Comput Electr Eng 47:69–81CrossRefGoogle Scholar
  30. Netto MAS et al (2014) Evaluating auto-scaling strategies for cloud computing environments. In: IEEE 22nd international symposium on modelling, analysis and simulation of computer and telecommunication systems (MASCOTS). IEEEGoogle Scholar
  31. Papadopoulos AV et al (2016) PEAS: a performance evaluation framework for auto-scaling strategies in cloud applications. ACM Trans Model Perform Eval Comput Syst (TOMPECS) 1(4):15Google Scholar
  32. Papagianni C, Leivadeas A, Papavassiliou S, Maglaris V, Cervello-Pastor C, Monje A (2013) On the optimal allocation of virtual resources in cloud computing networks. IEEE Trans Comput 62(6):1060–1071MathSciNetCrossRefGoogle Scholar
  33. Parikh K, Hawanna N, PK H, Iyengar NCS (2015) Virtual machine allocation policy in cloud computing using cloudsim in java. Int J Grid Distrib Comput 8(1):145–158CrossRefGoogle Scholar
  34. Piraghaj SF, Calheiros RN, Chan J, Dastjerdi AV, Buyya R (2016) Virtual machine customization and task mapping architecture for efficient allocation of cloud data center resources. Comput J 59(2):208–224CrossRefGoogle Scholar
  35. Salah K (2013) A Queuing model to achieve proper elasticity for cloud cluster jobs. Int J Cloud Comput 1(1):53–64Google Scholar
  36. Serrano D, Bouchenak S, Kouki Y, de Oliveira Jr FA, Ledoux T, Lejeune J, Sopena J, Arantes L, Sens P (2016) SLA guarantees for cloud services. Future Gener Comput Syst 54:233–246CrossRefGoogle Scholar
  37. Singh S, Chana I (2015) Q-aware: quality of service based cloud resource provisioning. Comput Electr Eng 47:138–160CrossRefGoogle Scholar
  38. Sood SK, Sandhu R (2015) Matrix based proactive resource provisioning in mobile cloud environment. Simul Model Pract Theory 50:83–95CrossRefGoogle Scholar
  39. Tang C, Steinder M, Spreitzer M, Pacifici G (2007) A scalable application placement controller for enterprise data centers. In: Proceedings of the 16th international conference on World Wide Web. ACM, pp 331–340Google Scholar
  40. Teymoor P, Sohraby K, Kim K (2016) A fair and efficient resource allocation scheme for multi-server distributed systems and networks. IEEE Trans Mob Comput 15(9):2137–2150CrossRefGoogle Scholar
  41. Tian W, Zhao Y, Xu M, Zhong Y, Sun X (2015) A toolkit for modeling and simulation of real-time virtual machine allocation in a cloud data center. IEEE Trans Autom Sci Eng 12(1):153–161CrossRefGoogle Scholar
  42. Urgaonkar R, Kozat UC, Igarashi K, Neely MJ (2010) Dynamic resource allocation and power management in virtualized data centers. In: 2010 IEEE network operations and management symposium-NOMS 2010. IEEE, pp 479–486Google Scholar
  43. Vaquero LM, Rodero-Merino L, Buyya R (2011) Dynamically scaling applications in the cloud. ACM SIGCOMM Comput Commun Rev 41(1):45–52CrossRefGoogle Scholar
  44. Voorsluys W, Broberg J, Venugopal S, Buyya R (2009) Cost of virtual machine live migration in clouds: a performance evaluation. In: IEEE international conference on cloud computing. Springer, Berlin, pp 254–265Google Scholar
  45. Wang J, Bao W, Zhu X, Yang LT, Xiang Y (2015) FESTAL: fault-tolerant elastic scheduling algorithm for real-time tasks in virtualized clouds. IEEE Trans Comput 64(9):2545–2558MathSciNetCrossRefGoogle Scholar
  46. Wu L (2014) SLA-based resource provisioning for management of cloud-based software-as-a-Service applications (Doctoral dissertation, The University of Melbourne, Australia)Google Scholar
  47. Wuhib F, Stadler R, Spreitzer M (2012) A gossip protocol for dynamic resource management in large cloud environments. IEEE Trans Netw Serv Manag 9(2):213–225CrossRefGoogle Scholar
  48. Xiao Z, Song W, Chen Q (2013) Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans Parallel Distrib Syst 24(6):1107–1117CrossRefGoogle Scholar
  49. Yang Y et al (2013) Heuristic scheduling algorithms for allocation of virtualized network and computing resources. J Softw Eng Appl 6:1–13CrossRefGoogle Scholar
  50. Zhao L, Sakr S, Liu A (2015) A framework for consumer-centric SLA management of cloud-hosted databases. IEEE Trans Serv Comput 8(4):534–549CrossRefGoogle Scholar
  51. Zhu X, He C, Li K, Qin X (2012) Adaptive energy-efficient scheduling for real-time tasks on DVS-enabled heterogeneous clusters. J Parallel Distrib Comput 72(6):751–763CrossRefGoogle Scholar
  52. Zhu X, Wang J, Guo H, Zhu D, Yang LT, Liu L (2016) Fault-tolerant scheduling for real-time scientific workflows with elastic resource provisioning in virtualized clouds. IEEE Trans Parallel Distrib Syst 27(12):3501–3517CrossRefGoogle Scholar
  53. Zhuang H, Liu X, Ou Z, Aberer K (2013) Impact of instance seeking strategies on resource allocation in cloud data centers. In: IEEE CLOUD. pp 27–34Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science and EngineeringThiagarajar College of EngineeringMaduraiIndia
  2. 2.Computer Science and EngineeringK.L.N.College of ITMaduraiIndia

Personalised recommendations