Soft Computing

, Volume 23, Issue 21, pp 10953–10968 | Cite as

A novel pythagorean fuzzy AHP and its application to landfill site selection problem

  • Ali Karasan
  • Esra Ilbahar
  • Cengiz KahramanEmail author
Methodologies and Application


Multi-criteria decision-making (MCDM) methods are susceptible to the subjectivity of experts when especially they use linguistic terms for assessment. This subjectivity and vagueness in the evaluation process have been handled by the recent extensions of ordinary fuzzy sets such as type-2 fuzzy sets, hesitant fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets and neutrosophic sets. Pythagorean fuzzy sets are superior to the other extensions with a more flexible definition of membership function. A novel Pythagorean fuzzy AHP method has been developed for MCDM. The developed method has been applied to a landfill site selection problem for the city of Istanbul in Turkey. The proposed method has successfully evaluated the landfill location alternatives with respect to the considered criteria. The results are compared with ordinary fuzzy AHP, and it is revealed that the proposed method produces consistent and informative outcomes better representing the uncertainty of decision-making environment. Robustness of the decision given by the proposed method is ensured by conducting one-at-a-time sensitivity analysis.


Pythagorean fuzzy sets AHP Landfill site selection MCDM Interval-valued sets 


Compliance with ethical standards

Conflict of interest

All authors declare that there is no conflict of interest.

Human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abdullah L, Najib L (2014) A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process. Expert Syst Appl 41(7):3297–3305CrossRefGoogle Scholar
  2. Abdullah L, Sunadia J, Imran T (2009) A new analytic hierarchy process in multi-attribute group decision making. Int J Soft Comput 4(5):208–214Google Scholar
  3. Akbari V, Rajabi MA, Chavoshi SH, Shams R (2008) Landfill site selection by combining GIS and fuzzy multi criteria decision analysis, case study: Bandar Abbas, Iran. World Appl Sci J 3(1):39–47Google Scholar
  4. Alavi N, Goudarzi G, Babaei AA, Jaafarzadeh N, Hosseinzadeh M (2013) Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: a case study in Mahshahr County, Iran. Waste Manag Res 31(1):98–105CrossRefGoogle Scholar
  5. Al-Jarrah O, Abu-Qdais H (2006) Municipal solid waste landfill siting using intelligent system. Waste Manag 26(3):299–306CrossRefGoogle Scholar
  6. Arslankaya E, Ataselim F, Varinca KB (2007) Kati atik toplama-tasima araclarinin aktarma merkezleri veistanbul trafiginde meydana getirdikleri yuklerin degerlendirilmesi. In: AB Surecinde Turkiyede Kati Atik Yonetimi ve Cevre Sorunlari TURKAYGoogle Scholar
  7. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96CrossRefzbMATHGoogle Scholar
  8. Atannasov K (1999) Intuitionistic fuzzy sets: theory and applications. Physica-Verlag, New YorkCrossRefGoogle Scholar
  9. Baban SM, Flannagan J (1998) Developing and implementing GIS-assisted constraints criteria for planning landfill sites in the UK. Plan Pract Res 13(2):139–151CrossRefGoogle Scholar
  10. Banar M, Kose BM, Ozkan A, Acar IP (2007) Choosing a municipal landfill site by analytic network process. Environ Geol 52(4):747–751CrossRefGoogle Scholar
  11. Beskese A, Demir HH, Ozcan HK, Okten HE (2015) Landfill site selection using fuzzy AHP and fuzzy TOPSIS: a case study for Istanbul. Environ Earth Sci 73(7):3513–3521CrossRefGoogle Scholar
  12. Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy Sets Syst 17(3):233–247CrossRefMathSciNetzbMATHGoogle Scholar
  13. Canada JR (1980) Capital investment decision analysis for management and engineering. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  14. Cevik Onar S, Oztaysi B, Kahraman C (2014) Strategic decision selection using hesitant fuzzy TOPSIS and interval type-2 fuzzy AHP: a case study. Int J Comput Intell Syst 7(5):1002–1021CrossRefGoogle Scholar
  15. Chang NB, Parvathinathan G, Breeden JB (2008) Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J Environ Manag 87(1):139–153CrossRefGoogle Scholar
  16. Dick S, Yager RR, Yazdanbakhsh O (2016) On Pythagorean and complex fuzzy set operations. IEEE Trans Fuzzy Syst 24(5):1009–1021CrossRefGoogle Scholar
  17. Dong Y, Herrera-Viedma E (2015) Consistency-driven automatic methodology to set interval numerical scales of 2-tuple linguistic term sets and its use in the linguistic GDM with preference relation. IEEE Trans Cybern 45(4):780–792CrossRefGoogle Scholar
  18. Dong Y, Xu Y, Yu S (2009) Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model. IEEE Trans Fuzzy Syst 17(6):1366–1378CrossRefGoogle Scholar
  19. Dong Y, Zhang G, Hong WC, Yu S (2013) Linguistic computational model based on 2-tuples and intervals. IEEE Trans Fuzzy Syst 21(6):1006–1018CrossRefGoogle Scholar
  20. Effat HA, Hegazy MN (2012) Mapping potential landfill sites for North Sinai cities using spatial multicriteria evaluation. Egypt J Remote Sens Space Sci 15(2):125–133Google Scholar
  21. Erdogan M, Kaya I (2016) Evaluating alternative-fuel busses for public transportation in Istanbul using interval type-2 Fuzzy AHP and TOPSIS. J Mult Valued Logic Soft Comput 26(6):11Google Scholar
  22. Garg H (2016) A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decisionmaking processes. Int J Intel Syst 31(12):1234–1252CrossRefGoogle Scholar
  23. Garg H (2017) A novel improved accuracy function for interval valued pythagorean fuzzy sets and its applications in the decisionmaking process. Int J Intel Syst 32(12):1247–1260CrossRefGoogle Scholar
  24. Gbanie SP, Tengbe PB, Momoh JS, Medo J, Kabba VTS (2013) Modelling landfill location using geographic information systems (GIS) and multi-criteria decision analysis (MCDA): case study Bo, Southern Sierra Leone. Appl Geogr 36:3–12CrossRefGoogle Scholar
  25. Gorsevski PV, Donevska KR, Mitrovski CD, Frizado JP (2012) Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average. Waste Manag 32(2):287–296CrossRefGoogle Scholar
  26. Grattan Guinness I (1976) Fuzzy membership mapped onto intervals and many valued quantities. Math Logic Q 22(1):149–160CrossRefMathSciNetzbMATHGoogle Scholar
  27. Herrera F, Herrera-Viedma E, Martnez L (2008) A fuzzy linguistic methodology to deal with unbalanced linguistic term sets. IEEE Trans Fuzzy Syst 16(2):354–370CrossRefGoogle Scholar
  28. HerreraViedma E, LpezHerrera AG (2007) A model of an information retrieval system with unbalanced fuzzy linguistic information. Int J Intell Syst 22(11):1197–1214CrossRefGoogle Scholar
  29. ISTAC-1, Geri Kazanilamayan Atiklarin Bertarafi (2015) Accessed 26 May 2018
  30. ISTAC-2, Kati Atik Aktarma Istasyonlari ve Nakliye Hizmetleri. Accessed 26 May 2018
  31. Jahn KU (1975) Intervallwertige Mengen. Math Nach 68(1):115–132CrossRefGoogle Scholar
  32. Kahraman C, Oztaysi B, Sari IU, Turanoglu E (2014) Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowl Based Syst 59:48–57CrossRefGoogle Scholar
  33. Karaan A, Kahraman C (2017) A novel intuitionistic fuzzy DEMATELANPTOPSIS integrated methodology for freight village location selection. J Intell Fuzzy Syst Preprint:1–18Google Scholar
  34. Kilic M, Kaya I (2015) Investment project evaluation by a decision making methodology based on type-2 fuzzy sets. Appl Soft Comput 27:399–410CrossRefGoogle Scholar
  35. Kulak O, Kahraman C (2005) Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process. Inf Sci 170(2–4):191–210CrossRefzbMATHGoogle Scholar
  36. Kwong CK, Bai H (2002) A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. J Intell Manuf 13(5):367–377CrossRefGoogle Scholar
  37. Kwong CK, Bai H (2003) Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach. Iie Trans 35(7):619–626CrossRefGoogle Scholar
  38. Lee AH, Chen WC, Chang CJ (2008) A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan. Expert Syst Appl 34(1):96–107CrossRefGoogle Scholar
  39. Li CC, Dong Y, Herrera F, Herrera-Viedma E, Martnez L (2017) Personalized individual semantics in computing with words for supporting linguistic group decision making: an application on consensus reaching. Inf Fusion 33:29–40CrossRefGoogle Scholar
  40. Lin HY, Kao JJ (2005) Grid-based heuristic method for multifactor landfill siting. J Comput Civil Eng 19(4):369–376CrossRefGoogle Scholar
  41. Marin LE, Torres V, Bolongaro A, Reyna JA, Pohle O, Hernandez-Espriu A, Chavarria J, Garcia-Barrios R, Tabla HFP (2012) Identifying suitable sanitary landfill locations in the state of Morelos, Mexico, using a geographic information system. Phys Chem Earth Parts A/B/C 37:2–9CrossRefGoogle Scholar
  42. Moeinaddini M, Khorasani N, Danehkar A, Darvishsefat AA (2010) Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj). Waste Manag 30(5):912–920CrossRefGoogle Scholar
  43. Mousavi SM, Gitinavard H, Siadat A (2014) A new hesitant fuzzy analytical hierarchy process method for decision-making problems under uncertainty. In: 2014 IEEE international conference on industrial engineering and engineering management (IEEM), pp 622–626Google Scholar
  44. M. of Environment, F. of Turkey, Ministry of Environment and Forestry of Turkey, Turkish regulations of the control of solid wastes, Official Gazette (1991)Google Scholar
  45. Nas B, Cay T, Iscan F, Berktay A (2010) Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environ Monit Assess 160(1–4):491–500CrossRefGoogle Scholar
  46. Ohnishi SI, Dubois D, Prade H, Yamanoi T (2006) A study on the analytic hierarchy process using a fuzzy reciprocal matrix. In: Proceeding of the conference IPMU 2006Google Scholar
  47. Onar S, Buyukozkan G, Oztaysi B, Kahraman C (2016) A new hesitant fuzzy QFD approach: an application to computer workstation selection. Appl Soft Comput 46:1–16CrossRefGoogle Scholar
  48. Oztaysi B (2015) A group decision making approach using interval type-2 Fuzzy AHP for enterprise information systems project selection. J Mult Valued Logic Soft Comput 24(5):475MathSciNetGoogle Scholar
  49. Oztaysi B, Onar SC, Bolturk E, Kahraman C (2015) Hesitant fuzzy analytic hierarchy process. In: 2015 IEEE international conference fuzzy systems (FUZZ-IEEE), pp 1–7Google Scholar
  50. Pedrycz W, Song M (2014) A granulation of linguistic information in AHP decision-making problems. Inf Fusion 17:93–101CrossRefGoogle Scholar
  51. Peng X, Yang Y (2015) Some results for Pythagorean fuzzy sets. Int J Intel Syst 30(11):1133–1160CrossRefGoogle Scholar
  52. Ren P, Xu Z, Liao H (2016) Intuitionistic multiplicative analytic hierarchy process in group decision making. Comput Ind Eng 101:513–524CrossRefGoogle Scholar
  53. Ruoning X, Xiaoyan Z (1992) Extensions of the analytic hierarchy process in fuzzy environment. Fuzzy Sets Syst 52(3):251–257CrossRefMathSciNetGoogle Scholar
  54. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98Google Scholar
  55. Sadiq R, Tesfamariam S (2009) Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch Environ Res Risk Assess 23(1):75–91CrossRefMathSciNetzbMATHGoogle Scholar
  56. Sambuc R (1975) Fonctions and Floues: Application a l’aide au Diagnostic en Pathologie Thyroidienne, Facult de Mdecine de MarseilleGoogle Scholar
  57. Saral A, Demir S, Yldz S (2009) Assessment of odorous VOCs released from a main MSW landfill site in Istanbul-Turkey via a modelling approach. J Hazard Mater 168(1):338–345CrossRefGoogle Scholar
  58. Sener B, Suzen ML, Doyuran V (2006) Landfill site selection by using geographic information systems. Environ Geol 49(3):376–388CrossRefGoogle Scholar
  59. Sener S, Sener E, Nas B, Karaguzel R (2010) Combining AHP with GIS for landfill site selection: a case study in the Lake Beysehir catchment area (Konya, Turkey). Waste Manag 30(11):2037–2046CrossRefGoogle Scholar
  60. Sener S, Sener E, Karaguzel R (2011) Solid waste disposal site selection with GIS and AHP methodology: a case study in SenirkentUluborlu (Isparta) Basin, Turkey. Environ Monit Assess 173(1–4):533–554CrossRefGoogle Scholar
  61. Siddiqui MZ, Everett JW, Vieux BE (1996) Landfill siting using geographic information systems: a demonstration. J Environ Eng 122(6):515–523CrossRefGoogle Scholar
  62. Sumathi VR, Natesan U, Sarkar C (2008) GIS-based approach for optimized siting of municipal solid waste landfill. Waste Manag 28(11):2146–2160CrossRefGoogle Scholar
  63. TODAIE, Istanbul Ilceleri Cografi Bilgileri Listesi (2017). Accessed 26 May 2018
  64. Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539zbMATHGoogle Scholar
  65. Uyan M (2014) MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environ Earth Sci 71(4):1629–1639CrossRefGoogle Scholar
  66. Van Laarhoven PJM, Pedrycz W (1983) A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst 11(1–3):229–241CrossRefMathSciNetzbMATHGoogle Scholar
  67. Vatalis K, Manoliadis O (2002) A two-level multicriteria DSS for landfill site selection using GIS: case study in western Macedonia, Greece. J Geogr Inf Decis Anal 6(1):49–56Google Scholar
  68. Wang L, Chu J, Wu J (2007) Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. Int J Prod Econ 107(1):151–163CrossRefGoogle Scholar
  69. Wang G, Qin L, Li G, Chen L (2009) Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. J Environ Manag 90(8):2414–2421CrossRefGoogle Scholar
  70. Wang X, Chan HK, Yee RW, Diaz-Rainey I (2012) A two-stage fuzzy-AHP model for risk assessment of implementing green initiatives in the fashion supply chain. Int J Prod Econ 135(2):595–606CrossRefGoogle Scholar
  71. Wu J, Huang HB, Cao QW (2013) Research on AHP with interval-valued intuitionistic fuzzy sets and its application in multi-criteria decision making problems. Appl Math Model 37(24):9898–9906CrossRefMathSciNetzbMATHGoogle Scholar
  72. Xu Z, Liao H (2014) Intuitionistic fuzzy analytic hierarchy process. IEEE Trans Fuzzy Syst 22(4):749–761CrossRefGoogle Scholar
  73. Yager R R (2013) Pythagorean fuzzy subsets. In: 2013 Joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). IEEE, pp 57–61Google Scholar
  74. Yager RR (2014) Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 22(4):958–965CrossRefGoogle Scholar
  75. Yager RR (2016) Properties and applications of Pythagorean fuzzy sets. In imprecision and uncertainty in information representation and processing. Springer, Cham, pp 119–136Google Scholar
  76. Yager RR, Abbasov AM (2013) Pythagorean membership grades, complex numbers, and decision making. Int J Intell Syst 28(5):436–452CrossRefGoogle Scholar
  77. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353CrossRefzbMATHGoogle Scholar
  78. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. I. Inf Sci 8(3):199–249CrossRefMathSciNetzbMATHGoogle Scholar
  79. Zeng S, Chen J, Li X (2016) A hybrid method for pythagorean fuzzy multiple-criteria decision making. Int J Inf Technol Decis Making 15(02):403–422CrossRefGoogle Scholar
  80. Zhang X (2016) Multicriteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf Sci 330:104–124CrossRefGoogle Scholar
  81. Zhang X, Xu Z (2014) Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int J Intell Syst 29(12):1061–1078CrossRefMathSciNetGoogle Scholar
  82. Zhang C, Li D, Ren R (2016) Pythagorean fuzzy multigranulation rough set over two universes and its applications in merger and acquisition. Int J Intel Syst 31(9):921–943CrossRefGoogle Scholar
  83. Zhang C, Ma CB, Xu JD (2005, August) A new fuzzy MCDM method based on trapezoidal fuzzy AHP and hierarchical fuzzy integral. In: International conference on fuzzy systems and knowledge discovery. Springer, Berlin, pp 466–474Google Scholar
  84. Zhou W, Xu Z (2016) Asymmetric hesitant fuzzy sigmoid preference relations in the analytic hierarchy process. Inf Sci 358:191–207CrossRefGoogle Scholar
  85. Zhu B, Xu Z, Zhang R, Hong M (2016) Hesitant analytic hierarchy process. Eur J Oper Res 250(2):602–614CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Natural and Applied SciencesYildiz Technical UniversityBesiktasTurkey
  2. 2.Department of Industrial EngineeringIstanbul Technical UniversityMackaTurkey
  3. 3.Department of Industrial EngineeringYildiz Technical UniversityBesiktasTurkey

Personalised recommendations