Advertisement

Soft Computing

, Volume 22, Issue 22, pp 7659–7678 | Cite as

Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted Nie–Tan algorithms

  • Yang Chen
  • Dazhi Wang
Methodologies and Application
  • 15 Downloads

Abstract

In recent years, researching on general type-2 fuzzy logic systems (GT2 FLSs) has become a hot topic as the development of alpha-planes representation of general type-2 fuzzy sets. The iterative Karnik–Mendel (KM) algorithms are used to perform the key block of type-reduction (TR) of GT2 FLSs. However, the KM algorithms are computationally intensive and time-consuming, which is not adapted to real-time applications. In the enhanced types of algorithms, the noniterative Nie–Tan (NT) algorithms decrease the computational cost greatly. Moreover, the closed-form Nie–Tan algorithms which calculate the outputs by averaging the lower and upper bounds of the membership functions have been proved to be actually an accurate algorithm for performing TR. The paper expands the NT algorithms to three different forms of weighted NT (WNT) algorithms according to the Newton–Cotes quadrature formulas of numerical integration techniques. Four computer simulation examples are adopted to analyze the performances of WNT algorithms when solving the type-reduction of general type-2 fuzzy logic systems. The proposed WNT algorithms have smaller absolute errors and faster convergence speed compared with NT algorithms, which provide the potential value for designers and adopters of GT2 FLSs.

Keywords

General type-2 fuzzy logic systems Type-reduction Nie–Tan algorithms Weighted Nie–Tan algorithms Computer simulation 

Notes

Acknowledgements

This paper is partially supported by the Natural Science Foundation of China (No. 61773188, No. 61803189), Liaoning Province Natural Science Foundation Guidance Project (No. 20180550056) and Fundamental Research Funds for Liaoning's Universities (No. JL201615410). The author is very obliged to Professor Jerry Mendel, who has offered the author some important suggestions.

Compliance with ethical standards

Conflict of interest

No conflict exists. The authors declare that they have no conflict of interest

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aisbett J, Rickard JT, Morgenthaler DG (2010) Type-2 fuzzy sets as functions on spaces. IEEE Trans Fuzzy Syst 18(4):841–844CrossRefGoogle Scholar
  2. Bel A, Wagner C, Hagras H (2013) Multiobjective optimization and comparison of nonsingleton type-1 and singleton interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 21(3):459–476CrossRefGoogle Scholar
  3. Biglarbegian M, Melek WW, Mendel JM (2010) On the stability of interval type-2 TSK fuzzy logic systems. IEEE Trans Syst Man Cybern Part B Cybern 40(3):798–818CrossRefGoogle Scholar
  4. Biglarbegian M, Melek WW, Mendel JM (2011) On the robustness of type-1 and interval type-2 fuzzy logic systems in modeling. Inf Sci 181(7):1325–1347MathSciNetCrossRefGoogle Scholar
  5. Bilgin A, Hagras H, Malibari A et al (2013) Towards a linear general type-2 fuzzy logic based approach for computing with words. Soft Comput 17(12):2203–2222CrossRefGoogle Scholar
  6. Castillo O, Melin P (2008) Intelligent systems with interval type-2 fuzzy logic. Int J Innov Comput Inf Control 4(4):771–783Google Scholar
  7. Castillo O, Amador-Angulo L, Castro JR, Garcia-Valdez M (2016) A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf Sci 354(part c):257–274CrossRefGoogle Scholar
  8. Cazarez-Castro NR, Aguilar LT, Castillo O (2012) Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng Appl Artif Intell 25(5):971–979CrossRefGoogle Scholar
  9. Chen Y (2018) Study on weighted Nagar–Bardini algorithms for centroid type-reduction of interval type-2 fuzzy logic systems. J Intell Fuzzy Syst 34(4):2417–2428CrossRefGoogle Scholar
  10. Chen Y, Wang DZ (2016) Type-reduction of interval type-2 fuzzy logic systems with weighted Karnik–Mendel algorithms. Control Theory and Applications 33(10):1327–1336MathSciNetzbMATHGoogle Scholar
  11. Chen Y, Wang DZ (2017) Forecasting by general type-2 fuzzy logic systems optimized with QPSO algorithms. Int J Control Autom Syst 15(6):2950–2958MathSciNetCrossRefGoogle Scholar
  12. Chen Y, Wang DZ (2018) Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik–Mendel algorithms. Soft Comput 22(4):1361–1380CrossRefGoogle Scholar
  13. Chen Y, Wang DZ, Ning W (2015) Studies on centroid type-reduction algorithms for general type-2 fuzzy logic systems. Int J Innov Comput Inf Control 11(6):1987–2000Google Scholar
  14. Chen Y, Wang DZ, Tong SC (2016) Forecasting studies by designing Mamdani interval type-2 fuzzy logic systems: with combination of BP algorithms and KM algorithms. Neurocomputing 174(part b):1133–1146CrossRefGoogle Scholar
  15. Chen Y, Wang DZ, Ning W (2018) Forecasting by TSK general type-2 fuzzy logic systems optimized with genetic algorithms. Opt Control Appl Methods 39(1):393–409MathSciNetCrossRefGoogle Scholar
  16. Coupland S, John R (2007) Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 15(1):3–15CrossRefGoogle Scholar
  17. Gonzalez C, Castro JR, Melin P, Castillo O (2016a) An edge detection method based on generalized type-2 fuzzy logic. Soft Comput 20(2):773–784CrossRefGoogle Scholar
  18. Gonzalez C, Castro JR, Melin P, Castillo O (2016b) An edge detection method based on generalized type-2 fuzzy logic. Soft Comput 20(2):773–784CrossRefGoogle Scholar
  19. Gonzalez CI, Melin P, Castro JR, Mendoza O, Castillo O (2017) General type-2 fuzzy edge detection in the preprocessing of a face recognition system. Springer, BerlinCrossRefGoogle Scholar
  20. Greenfield S, Chiclana F (2013a) Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set. Int J Approx Reason 54(8):1013–1033MathSciNetCrossRefGoogle Scholar
  21. Greenfield S, Chiclana F (2013b) Defuzzification of the discretised generalised type-2 fuzzy set: experimental evaluation. Inf Sci 244(7):1–25MathSciNetCrossRefGoogle Scholar
  22. Greenfield S, Chiclana F, Coupland S, John R (2009) The collapsing method of defuzzification for discretised interval type-2 fuzzy sets. Inf Sci 179(3):2055–2069MathSciNetCrossRefGoogle Scholar
  23. Hsu CH, Juang CF (2013) Evolutionary robot wall-following control using type- 2 fuzzy controller with species-de-activated continuous ACO. IEEE Trans Fuzzy Syst 21(1):100–112CrossRefGoogle Scholar
  24. Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inf Sci 132(1):195–220MathSciNetCrossRefGoogle Scholar
  25. Khosravi A, Nahavandi S (2014) Load forecasting using interval typ-2 fuzzy logic systems: optimal type reduction. IEEE Trans Industr Inf 10(2):1055–1063CrossRefGoogle Scholar
  26. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, Upper Saddle River, NJ, USAzbMATHGoogle Scholar
  27. Li JW, John R, Coupland S, Kendall G (2018) On Nie–Tan operator and type-reduction of interval type-2 fuzzy sets. IEEE Trans Fuzzy Syst 26(2):1036–1039CrossRefGoogle Scholar
  28. Liu FL (2008) An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf Sci 178(1):2224–2236MathSciNetCrossRefGoogle Scholar
  29. Liu XW, Mendel JM (2011) Connect Karnik–Mendel algorithms to root-finding for computing the centroid of an interval type-2 fuzzy set. IEEE Trans Fuzzy Syst 19(4):652–665CrossRefGoogle Scholar
  30. Liu XW, Mendel JM, Wu DR (2012) Study on enhanced Karnik–Mendel algorithms: initialization explanations and computation improvements. Inf Sci 184(1):75–91MathSciNetCrossRefGoogle Scholar
  31. Mathews JH, Fink KD (2004) Numerical Methods Using Matlab. Prentice-Hall Inc, Upper Saddle River, NJGoogle Scholar
  32. Melin P, Gonzalez CI, Castro JR, Mendoza O, Castillo O (2014) Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans Fuzzy Syst 22(6):1515–1525CrossRefGoogle Scholar
  33. Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  34. Mendel JM (2009) Alpha-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans Fuzzy Syst 17(5):1189–1207CrossRefGoogle Scholar
  35. Mendel JM (2010) Comment on α-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans Fuzzy Syst 18(1):229–230CrossRefGoogle Scholar
  36. Mendel JM (2013a) On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans Fuzzy Syst 21(3):426–446CrossRefGoogle Scholar
  37. Mendel JM (2013b) Simplified interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 21(6):1056–1069CrossRefGoogle Scholar
  38. Mendel JM (2014) General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans Fuzzy Syst 22(5):1162–1182CrossRefGoogle Scholar
  39. Mendel JM, John RB (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127CrossRefGoogle Scholar
  40. Mendel JM, Liu FL (2007) Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set. IEEE Trans Fuzzy Syst 15(2):309–320CrossRefGoogle Scholar
  41. Mendel JM, Wu HW (2007a) Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems. IEEE Trans Fuzzy Syst 14(6):360–377Google Scholar
  42. Mendel JM, Wu HW (2007b) New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule. Inf Sci 177(2):360–377MathSciNetCrossRefGoogle Scholar
  43. Nie M, Tan WW (2008) Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: IEEE international conference on fuzzy systems, pp 1425–1432Google Scholar
  44. Olivas F, Valdez F, Castillo O et al (2016) Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput 20(3):1057–1070CrossRefGoogle Scholar
  45. Ontiveros-Robles E, Melin P, Castillo O (2017) New methodology to approximate type-reduction based on a continuous root-finding Karnik Mendel algorithm. Algorithms 10(3):1–21MathSciNetCrossRefGoogle Scholar
  46. Ontiveros-Robles E, Melin P, Castillo O (2018) Comparative analysis of noise robustness of type-2 fuzzy logic controllers. Kybernetika 54(1):175–201MathSciNetzbMATHGoogle Scholar
  47. Sanchez MA, Castillo O, Castro JR (2015) Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst Appl 42(14):5904–5914CrossRefGoogle Scholar
  48. Wagner C, Hagras H (2010) Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans Fuzzy Syst 18(4):637–660CrossRefGoogle Scholar
  49. Wagner C, Hagras H (2013) Slices based general type-2 fuzzy sets and systems, in advances in type-2 fuzzy sets and systems: theory and applications. In: Sadeghian A, Mendel JM, Tahayori H (eds) Springer, New YorkGoogle Scholar
  50. Wang DZ, Chen Y (2018) Study on permanent magnetic drive forecasting by designing Takagi Sugeno Kang type interval type-2 fuzzy logic systems. Trans Inst Meas Control 40(6):2011–2023CrossRefGoogle Scholar
  51. Wang T, Chen Y, Tong SC (2008) Fuzzy reasoning models and algorithms on type-2 fuzzy sets. Int J Innov Comput Inf Control 4(10):2451–2460Google Scholar
  52. Wu DR (2013) Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans Fuzzy Syst 21(1):80–99CrossRefGoogle Scholar
  53. Wu HW, Mendel JM (2002) Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 10(5):622–639CrossRefGoogle Scholar
  54. Wu DR, Mendel JM (2009) Enhanced Karnik–Mendel algorithms. IEEE Trans Fuzzy Syst 17(4):923–934CrossRefGoogle Scholar
  55. Wu DR, Nie M (2011) Comparison and practical implementations of type reduction algorithms for type-2 fuzzy sets and systems. In: IEEE international conference on fuzzy systems, pp 2131–3138Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.College of ScienceLiaoning University of TechnologyJinzhouChina

Personalised recommendations