Soft Computing

, Volume 23, Issue 12, pp 4019–4039 | Cite as

On distributed user-centric memetic algorithms

  • Antonio J. Fernández-LeivaEmail author
  • Álvaro Gutiérrez-Fuentes
Methodologies and Application


A user-centric memetic algorithm (UcMA) represents an instance of the so-called interactive evolutionary computation, in which the subjacent algorithm that interacts with a human consists of a memetic algorithm (MA) that manages knowledge of the problem with the aim of accelerating the solution search process. UcMAs have been proved to be effective optimization methods to tackle problems that require human intervention (in the form of evaluations/decisions). This paper proposes two generic schemas to distribute a number of (interactive/proactive) UcMAs that act as independent agents and, eventually, synchronize to interchange information. These schemas can be instantiated via a number of parameters (including the cooperation topology) to develop novel 2-dimensional spatially structured cooperative UcMAs. These algorithms can be viewed as specific instances of the so-called parallel MAs but with the particularity that they are especially suited to dealing with combinatorial problems whose solving requires subjective evaluations. An experimental study over microarray ordering problems is done including distinct instances of an NP-hard problem with strong implications in biomedicine and molecular biology, namely the gene ordering problem. It is shown that some distributed UcMAs, especially those based on proactivity, which have been instantiated from our proposals, efficiently handle these problems.


Distributed computing Memetic algorithm Interactive evolutionary computation User-centric optimization Combinatorial optimization Gene ordering problem 



This work is partially funded by Junta de Andalucía (project P10-TIC-6083, DNEMESIS—, by Ministerio Español de Economía y Competitividad (project TIN2014-56494-C4-1-P, UMA::EPHEMECH— and project TIN2017-85727-C4-1-P, UMA::DEEP-BIO), and Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech.

Compliance with Ethical Standards

Conflict of interest

Authors Antonio J. Fernández-Leiva and Álvaro Gutiérrez-Fuentes declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Alizadeh AA et al (2001) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511CrossRefGoogle Scholar
  2. Amaya JE, Cotta C, Fernández-Leiva AJ (2011) Memetic cooperative models for the tool switching problem. Memet Comput 3(3):199–216. CrossRefGoogle Scholar
  3. Arnone A, Davidson B (1997) The hardwiring of development: organization and function of genomic regulatory systems. Development 124:1851–1864Google Scholar
  4. Babbar M, Minsker B (2006) A collaborative interactive genetic algorithm framework for mixed-initiative interaction with human and simulated experts: a case study in long-term groundwater monitoring design. In: World environmental and water resources congress 2006Google Scholar
  5. Badillo AR, Ruiz JJ, Cotta C, Fernández-Leiva AJ (2013) On user-centric memetic algorithms. Soft Comput 17(2):285–300. CrossRefGoogle Scholar
  6. Beck JC, Wilson N (2005) Proactive algorithms for scheduling with probabilistic durations. In Proceedings of the 19th international joint conference on artificial intelligence, IJCAI’05. San Francisco, CA, USA, Morgan Kaufmann Publishers Inc., pp 1201–1206.
  7. Beck JC, Wilson N (2007) Proactive algorithms for job shop scheduling with probabilistic durations. J Artif Intell Res 28(1):183–232.
  8. Ben-Dor A, Yakhini Z (1999) Clustering gene expression patterns. In: Proceedings of the ACM RECOMB’99. ACM Press, Lyon, France, pp 33–42Google Scholar
  9. Blocho M, Czech ZJ (2013) A parallel memetic algorithm for the vehicle routing problem with time windows. In: 2013 eighth international conference on P2P, parallel, grid, cloud and internet computing (3PGCIC), pp 144–151.
  10. Bonissone PP, Subbu R, Eklund NHW, Kiehl TR (2006) Evolutionary algorithms \(+\) domain knowledge \(=\) real-world evolutionary computation. IEEE Trans Evol Comput 10(3):256–280CrossRefGoogle Scholar
  11. Bozejko W, Wodecki M (2011) The methodology of parallel memetic algorithms designing. In: Filipe J, Ana L, Fred N (eds) ICAART 2011—proceedings of the 3rd international conference on agents and artificial intelligence, volume 1—artificial Intelligence, Rome, Italy, 28–30 January 2011, SciTePress, pp 643–648. ISBN: 978-989-8425-40-9Google Scholar
  12. Breukelaar R, Emmerich M, Bck T (2006) On interactive evolution strategies. In Rothlauf F, Branke J, Cagnoni S, Costa E, Cotta C, Drechsler R, Lutton E, Machado P, Moore J, Romero J, Smith G, Squillero G, Takagi H (eds) Applications of evolutionary computing, volume 3907 of Lecture Notes in Computer Science. Springer, pp 530–541Google Scholar
  13. Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A fast adaptive memetic algorithm for online and offline control design of PMSM drives. IEEE Trans Syst Man Cybern Part B 37(1):28–41. CrossRefGoogle Scholar
  14. Caponio A, Neri F, Tirronen V (2009) Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput 13(8–9):811–831. CrossRefGoogle Scholar
  15. Carlos C, David P (2009) Soft computing and cooperative strategies for optimization. Appl Soft Comput 9(1):30–38 ISSN 1568-4946Google Scholar
  16. Chakhlevitch K, Cowling PI (2008) Hyperheuristics: recent developments. In: Cotta C, Sevaux M, Sörensen K (eds) Adaptive and multilevel metaheuristics, volume 136 of Studies in Computational Intelligence. Springer, pp 3–29. ISBN: 978-3-540-79437-0Google Scholar
  17. Chen H, Zhu Y, Hu K, He X, Niu B (2008) Cooperative approaches to bacterial foraging optimization. In Proceedings of the 4th international conference on intelligent computing: advanced intelligent computing theories and applications—with aspects of artificial intelligence, ICIC ’08. Springer-Verlag, Berlin, Heidelberg, pp 541–548.; ISBN: 978-3-540-85983-3
  18. Cotta C, Mendes A, Garcia V, França P, Moscato P (2003) Applying memetic algorithms to the analysis of microarray data. In: Raidl G et al (eds) Applications of evolutionary computing, vol 2611. Lecture Notes in Computer Science. Berlin, Springer, pp 22–32CrossRefGoogle Scholar
  19. Cotta C, Fernández-Leiva AJ (2011) Bio-inspired combinatorial optimization: notes on reactive and proactive interaction. In: Cabestany J, Rojas I, Caparrós GJ (eds) Advances in computational intelligence—11th international work-conference on artificial neural networks, Part II (IWANN 2011), volume 6692 of Lecture Notes in Computer Science. Springer, Málaga, Spain, pp 348–355Google Scholar
  20. Cotta C, Moscato P (2003) A memetic-aided approach to hierarchical clustering from distance matrices: application to gene expression clustering and phylogeny. Biosystems 72(1–2):75-97.; URL ISSN 0303-2647. Computational Intelligence in Bioinformatics
  21. Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In Edmund B. Wilhelm E (eds) Practice and theory of automated timetabling III, volume 2079 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, pp 176–190. URL
  22. Crainic TG, Gendreau M (2002) Cooperative parallel Tabu search for capacitated network design. J Heuristics 8(6):601–627. ISSN 1381-1231Google Scholar
  23. Crainic TG, Gendreau M, Hansen P, Mladenović N (2004) Cooperative parallel variable neighborhood search for the p-median. J Heuristics 10:293–314. ISSN 1381-1231Google Scholar
  24. Culberson J (1998) On the futility of blind search: an algorithmic view of "no free lunch". Evol Comput 6(2):109–128CrossRefGoogle Scholar
  25. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New YorkGoogle Scholar
  26. Dawkins R (1976) The selfish gene. Clarendon Press, OxfordGoogle Scholar
  27. Deb K, Chaudhuri S (2007) I-mode: an interactive multi-objective optimization and decision-making using evolutionary methods. KanGal report 2007003, Kanpur genetic algorithms laboratory, 2007Google Scholar
  28. Deb K, Kumar A (2007) Interactive evolutionary multi-objective optimization and decision-making using reference direction method. KanGal report 2007001, Kanpur genetic algorithms laboratory, 2007Google Scholar
  29. DeRisi JL, Lyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686CrossRefGoogle Scholar
  30. Dias J, Captivo M, Clímaco J (2008) A memetic algorithm for multi-objective dynamic location problems. J Global Optim 42:221–253MathSciNetCrossRefzbMATHGoogle Scholar
  31. Dozier G (2001) Evolving robot behavior via interactive evolutionary computation: from real-world to simulation. In: 16th ACM Symposium on applied computing (SAC2001), Las Vegas, NV. ACM Press, pp 340–344Google Scholar
  32. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868CrossRefGoogle Scholar
  33. Espinar J, Cotta C, Fernández-Leiva AJ (2012) User-centric optimization with evolutionary and memetic systems. In: Ivan L, Svetozar M, Jerzy W (eds) 8th International conference on large-scale scientific computing (LSSC 2011), volume 7116 of Lecture Notes in Computer Science, Sozopol, Bulgaria. Springer, pp 214–221. ISBN: 978-3-642-29842-4Google Scholar
  34. Fasulo D (1999) An analysis of recent work on clustering algorithms. Technical report UW-CSEO1-03-02, University of Washington, 1999Google Scholar
  35. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180 (10): 2044–2064, May 2010. ISSN 0020-0255
  36. Gong D, Yao X, Yuan J (2009) Interactive genetic algorithms with individual fitness not assigned by human. J Univers Comput Sci 15(13):2446–2462Google Scholar
  37. Hart WE, Belew RK (1991a) Optimizing an arbitrary function is hard for the genetic algorithm. In Belew RK, Booker LB (eds) 4\(^{th}\) international conference on genetic algorithms, San Mateo CA, 1991a. Morgan Kaufmann, pp 190–195Google Scholar
  38. Hart WE, Belew RK (1991b) Optimizing an arbitrary function is hard for the genetic algorithm. In Belew RK, Booker LB (eds) Proceedings of the fourth international conference on genetic algorithms. Morgan Kaufmann, San Mateo, pp 190–195Google Scholar
  39. Hartuv E, Schmitt A, Lange J, Meier-Ewert S, Lehrach H, Shamir R (1999) An algorithm for clustering cDNAs for gene expression analysis. In: Proceedings of the ACM RECOMB’99, Lyon, France. ACM Press, pp 188–197Google Scholar
  40. Houck C, Joines JA, Kay MG, Wilson JR (1997) Empirical investigation of the benefits of partial lamarckianism. Evol Comput 5(1):31–60CrossRefGoogle Scholar
  41. Inoue T, Furuhashi T, Fujii M, Maeda H, Takaba M (1999) Development of nurse scheduling support system using interactive ea. IEEE Int Conf Syst Man Cybern 5:533–5379Google Scholar
  42. Jaszkiewicz A (2004) Interactive multiple objective optimization with the pareto memetic algorithm. In Gottlieb J et al (eds) 4th EU/ME workshop: design and evaluation of advanced hybrid meta-heuristics, Nottingham, UK, 4–5 November 2004. URL
  43. Jenner RG, Alba MM, Boshoff C, Kellam P (2001) Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75:891–902CrossRefGoogle Scholar
  44. Khanna R, Liu H, Chen H-H (2008) Proactive power optimization of sensor networks. In: IEEE international conference on communications (ICC), Beijing, China. IEEE, pp 2119–2123Google Scholar
  45. Klau G, Lesh N, Marks J, Mitzenmacher M (2010) Human-guided search. J Heuristics 16:289–310. ISSN 1381-1231Google Scholar
  46. Kosorukoff A (2001) Human-based genetic algorithm. In: 2001 IEEE international conference on systems man, and cybernetics. IEEE Press, Tucson, AZ, USA, pp 3464–3469Google Scholar
  47. Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9(5):474–488CrossRefGoogle Scholar
  48. Kubota N, Nojima Y, Sulistijono IA, Kojima F (2003) Interactive trajectory generation using evolutionary programming for a partner robot. In: 12th IEEE international workshop on robot and human interactive communication (ROMAN 2003), Millbrae, California, USA, October 2003, pp 335–340Google Scholar
  49. LeBouthillier A, Crainic TG (2005) A cooperative parallel meta-heuristic for the vehicle routing problem with time windows. Comput Oper Res 32(7):1685–1708.; URL ISSN 0305-0548
  50. Lehmann EL, D’Abrera HJ (1998) M Nonparametrics: statistical methods based on ranks. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  51. Lim S, Cho S-B (2005) Language generation for conversational agent by evolution of plan trees with genetic programming. In: Vicen T, Yasuo N, Sadaaki M (eds)Modeling decisions for artificial intelligence, volume 3558 of Lecture Notes in Computer Science. Springer, pp 305–315Google Scholar
  52. Lim S, Kim K-M, Hong J-H, Cho S-B (2004) Interactive genetic programming for the sentence generation of dialogue-based travel planning system. In: 7th Asia-Pacific conference on complex systems, Cairns, Australia, 2004. Asia-Pacific workshops on genetic programming, pp 6–10Google Scholar
  53. Lu S, Sun C (2008) Coevolutionary quantum-behaved particle swarm optimization with hybrid cooperative search. In: Computational intelligence and industrial application, 2008. PACIIA ’08. Pacific-Asia workshop on, volume 1, December 2008, pp 109–113.
  54. Malek R (2009) Collaboration of metaheuristic algorithms through a multi-agent system. In: Mark V, Strasser T, Zoitl A (eds) Holonic and multi-agent systems for manufacturing, vol 5696. Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, pp 72–81Google Scholar
  55. Mamoun MH (2010) A new proactive routing algorithm for manet. Int J Acad Res 2(2):199–204Google Scholar
  56. Masegosa AD, Mascia F, Pelta DA, Brunato M (2009) Cooperative strategies and reactive search: a hybrid model proposal. In Thomas S (ed) Learning and intelligent optimization, volume 5851 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, pp 206–220.
  57. Miho O, Hideyuki T, Kimiko O (1998) An input method using discrete fitness values for interactive ga. J Intell Fuzzy Syst 6(1):131–145Google Scholar
  58. Milano M, Roli A (2004) MAGMA: A Multiagent Architecture for Metaheuristics. IEEE Trans Syst Man Cybern Part B Cybern 34(2):925–941. ISSN 1083-4419Google Scholar
  59. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical report caltech concurrent computation program, report. 826, California Institute of Technology, Pasadena, California, USA, 1989Google Scholar
  60. Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, Maidenhead, pp 219–234Google Scholar
  61. Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer Academic Press, Boston, pp 105–144CrossRefGoogle Scholar
  62. Moscato P, Mendes A, Cotta C (2004) Memetic algorithms. In: Onwubolu GC, Babu BV (eds) New optimization techniques in engineering. Springer, Berlin, pp 53–85CrossRefGoogle Scholar
  63. Moscato P, Cotta C (2010) A modern introduction to memetic algorithms. In: Michel G, Jean-Yves P (eds) Handbook of Metaheuristics, volume 146 of International Series in Operations Research and Management Science, pages, 2nd edn. Springer, pp 141–183Google Scholar
  64. Nalepa J, Blocho M (2016b) Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Comput 20(6):2309–2327. CrossRefGoogle Scholar
  65. Nalepa J, Blocho M (2015) Co-operation in the parallel memetic algorithm. Int J Parallel Program 43(5):812–839. ISSN 0885-7458
  66. Nalepa J, Blocho M (2016a) Temporally adaptive co-operation schemes. In: Fatos X, Leonard B, Flora A (eds) Advances on P2P, parallel, grid, cloud and internet computing, proceedings of the 11th international conference on P2P, parallel, grid, cloud and internet computing, 3PGCIC 2016, Soonchunhyang University, Asan, Korea, 5–7 November 2016., volume 1 of Lecture Notes on Data Engineering and Communications Technologies, Springer, pp 145–156. ISBN: 978-3-319-49108-0
  67. Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol Comput 2:1–14CrossRefGoogle Scholar
  68. Neri F, Toivanen J, Mäkinen RAE (2007) An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV. Appl Intell 27(3):219–235. CrossRefGoogle Scholar
  69. Neri F, Cotta C, Moscato P (2012) Handbook of memetic algorithms, vol 379. Studies in Computational Intelligence. Springer, BerlinCrossRefGoogle Scholar
  70. Nogueras R, Cotta C (2014) An analysis of migration strategies in island-based multimemetic algorithms. In: Thomas B-B, Juergen B, Bogdan F, Jim S (eds) Problem solving from nature—PPSN XIII, volume 8672 of Lecture Notes in Computer Science, Springer International Publishing, pp 731–740. ISBN: 978-3-319-10761-5
  71. Nogueras R, Cotta C (2016) Studying self-balancing strategies in island-based multimemetic algorithms. J Comput Appl Math 293:180–191. Efficient Numerical Methods for Large-scale Scientific Computations. ISSN 0377-0427
  72. Ong Y-S, Lim M-H, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B 36(1):141–152CrossRefGoogle Scholar
  73. Ong Y-S, Lim M-H, Chen X (2010) Memetic computation–past, present & future [research frontier]. IEEE Comp Int Mag 5(2):24–31. CrossRefGoogle Scholar
  74. Özcan E, Drake JH, Altintas C, Asta S (2016) A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings. Appl Soft Comput 49(Supplement C):81–93.; URL ISSN 1568-4946
  75. Parejo JA, García J, Ruiz-Cortés A, Riquelme JC (2012) Statservice: Herramienta de análisis estadístico como soporte para la investigación con metaheurísticas. In Actas del VIII Congreso Expañol sobre Metaheurísticas, Algoritmos Evolutivos y Bio-inspirados, 2012Google Scholar
  76. Parmee IC (2007) Human-centric evolutionary systems in design and decision-making. In: Rennard JP (ed) Handbook of research on nature-inspired computing for economics and management, IGI Global, pp 395–411Google Scholar
  77. Parmee IC, Abraham JA (2004) User-centric evolutionary design. In: Marjanovic D (ed) 8th International design conference DESIGN 2004, decision making workshop, pp 1441–1446Google Scholar
  78. Parmee IC, Abraham JAR, Machwe A (2008) User-centric evolutionary computing: Melding human and machine capability to satisfy multiple criteria. In: Knowles J, Corne D, Deb K, Chair DR (eds) Multiobjective problem solving from nature, natural computing series. Springer, Berlin Heidelberg, pp 263–283. ISBN: 978-3-540-72964-8Google Scholar
  79. Pelta D, Cruz C, Sancho-Royo A, Verdegay J (2006) Using memory and fuzzy rules in a co-operative multi-thread strategy for optimization. Inf Sci 176:1849–1868CrossRefGoogle Scholar
  80. Puchinger J, Raidl GR (2005) Combining metaheuristics and exact algorithms in combinatorial optimization: a survey and classification. In: Mira J, Álvarez JR (eds) First international work-conference on the interplay between natural and artificial computation, IWINAC 2005, proceedings, part II, volume 3562 of Lecture Notes in Computer Science, Las Palmas, Canary Islands, Spain. Springer, pp 41–53. ISBN: 3-540-26319-5
  81. Quiroz JC, Banerjee A, Louis SJ (2008) Igap: interactive genetic algorithm peer to peer. In: Proceedings of the 10th annual conference on genetic and evolutionary computation, GECCO ’08, New York, NY, USA. ACM, pp 1719–1720. ISBN: 978-1-60558-130-9
  82. Quiroz JC, Louis SJ, Banerjee A, Dascalu SM (2009) Towards creative design using collaborative interactive genetic algorithms. In: IEEE congress on evolutionary computation (CEC 2009), Singapore. IEEE, pp 1849–1856Google Scholar
  83. Sáez Y, Viñuela PI, Segovia J, Castro JH (2005) Reference chromosome to overcome user fatigue in IEC. New Gener Comput 23(2):129–142CrossRefGoogle Scholar
  84. Sbihi A (2010) A cooperative local search-based algorithm for the multiple-scenario max-min knapsack problem. Eur J Oper Res 202(2):339–346.; URL ISSN 0377-2217
  85. Sudholt D (2009) The impact of parametrization in memetic evolutionary algorithms. Theor Comput Sci 410(26):2511–2528. MathSciNetCrossRefzbMATHGoogle Scholar
  86. Takagi H (2000) Active user intervention in an EC search. In: 5th Joint conference on information sciences (JCIS2000). Atlantic City, NJ, pp 995–998Google Scholar
  87. Takagi H (2015) Emergent trends in robotics and intelligent systems: where is the role of intelligent technologies in the next generation of robots? Chapter interactive evolutionary computation for analyzing human characteristics. Springer International Publishing, Cham, pp 189–195. ISBN: 978-3-319-10783-7
  88. Takagi H (2001) Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc IEEE 9:1275–1296CrossRefGoogle Scholar
  89. Tang J, Lim M-H, Ong Y-S (2007b) Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput 11(9):873–888. CrossRefGoogle Scholar
  90. Tang J, Lim MH, Ong YS, Song LQ (2007a) Hierarchical model parallel memetic algorithm in heterogeneous computing environment. In: 2007 IEEE congress on evolutionary computation, pp 2758–2765.
  91. Toulouse M, Crainic TG, Sanso B, Thulasiraman K (1998) Self-organization in cooperative tabu search algorithms. IEEE Int Conf Syst Man Cybern 3(2379–2384):11–14Google Scholar
  92. Toulouse M, Thulasiraman K, Glover F (1999) Multi-level cooperative search: a new paradigm for combinatorial optimization and an application to graph partitioning. In: Patrick A, Philippe B, Michel D, Daniel R, Iain D, Valrie F, Luc G (eds) Euro-Par’99 parallel processing, vol 1685. Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, pp 533–542CrossRefGoogle Scholar
  93. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept. Lenguajes y Ciencias de la Computación, ETSI Informática, Campus de TeatinosUniversidad de MálagaMálagaSpain

Personalised recommendations