Advertisement

Soft Computing

, Volume 22, Issue 13, pp 4319–4333 | Cite as

Symmetric implication zroupoids and identities of Bol–Moufang type

  • Juan M. Cornejo
  • Hanamantagouda P. SankappanavarEmail author
Foundations
  • 50 Downloads

Abstract

An algebra \({\mathbf {A}} = \langle A, \rightarrow , 0 \rangle \), where \(\rightarrow \) is binary and 0 is a constant, is called an implication zroupoid (\({\mathcal {I}}\)-zroupoid, for short) if \({\mathbf {A}}\) satisfies the identities: (I): \((x \rightarrow y) {\rightarrow } z \approx ((z' {\rightarrow } x) {\rightarrow } (y {\rightarrow } z)')'\), and (I\(_{0}\)): \( 0'' \approx 0\), where \(x' : = x \rightarrow 0\). An implication zroupoid is symmetric if it satisfies the identities: \(x'' \approx x\) and \((x \rightarrow y')' \approx (y \rightarrow x')'\). An identity is of Bol–Moufang type if it contains only one binary operation symbol, one of its three variables occurs twice on each side, each of the other two variables occurs once on each side, and the variables occur in the same (alphabetical) order on both sides of the identity. In this paper, we will present a systematic analysis of all 60 identities of Bol–Moufang type in the variety \({\mathcal {S}}\) of symmetric \({\mathcal {I}}\)-zroupoids. We show that 47 of the subvarieties of \({\mathcal {S}}\), defined by the identities of Bol–Moufang type, are equal to the variety \({\mathcal {SL}}\) of \(\vee \)-semilattices with the least element 0 and one of others is equal to \({\mathcal {S}}\). Of the remaining 12, there are only three distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of \({\mathcal {S}}\) of Bol–Moufang type.

Notes

Acknowledgements

The first author wants to thank the institutional support of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). The authors wish to express their indebtedness to the anonymous referees for their useful suggestions that helped improve the final presentation of this paper. The work of Juan M. Cornejo was supported by CONICET (Consejo Nacional de Investigaciones Cientificas y Tecnicas) and Universidad Nacional del Sur. Hanamantagouda P. Sankappanavar did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The first author declares that he has no conflict of interest. The second author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Balbes R, Dwinger PH (1974) Distributive lattices. University of Missouri Press, ColumbiazbMATHGoogle Scholar
  2. Bernstein BA (1934) A set of four postulates for Boolean algebras in terms of the implicative operation. Trans Am Math Soc 36:876–884MathSciNetzbMATHGoogle Scholar
  3. Burris S, Sankappanavar HP (1981) A course in universal Algebra. Springer, New York. The free, corrected version (2012) is available online as a PDF file at math.uwaterloo.ca/ \(\sim \) snburris Google Scholar
  4. Cornejo JM, Sankappanavar HP (2017) On implicator groupoids. Algebra Univers 77(2):125–146. doi: 10.1007/s00012-017-0429-0. arXiv:1509.03774 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cornejo JM, Sankappanavar HP (2016a) Order in implication zroupoids. Stud Log 104:417–453. doi: 10.1007/s11225-015-9646-8
  6. Cornejo JM, Sankappanavar HP (2016b) Semisimple varieties of implication zroupoids. Soft Comput 20:3139–3151. doi: 10.1007/s00500-015-1950-8
  7. Cornejo JM, Sankappanavar HP (2016c) On derived algebras and subvarieties of implication zroupoids. Soft Comput. doi: 10.1007/s00500-016-2421-6
  8. Cornejo JM, Sankappanavar HP (2017) Symmetric implication zroupoids and the weak associative laws (Submitted)Google Scholar
  9. Fenyves F (1969) Extra loops. II. Publ Math Debr 16:187–192MathSciNetzbMATHGoogle Scholar
  10. Kunen K (1996) Quasigroups, loops, and associative laws. J Algebra 185:194–204. doi: 10.1006/jabr.1996.0321 MathSciNetCrossRefzbMATHGoogle Scholar
  11. McCune W (2005–2010) Prover9 and Mace4. http://www.cs.unm.edu/mccune/prover9/
  12. Phillips JD, Vojtechovsky P (2005) The varieties of loops of Bol–Moufang type. Algebra Univers 54:259–271. doi: 10.1007/s00012-005-1941-1 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Phillips JD, Vojtechovsky P (2005) The varieties of quasigroups of Bol–Moufang type: an equational reasoning approach. J Algebra 293:17–33MathSciNetCrossRefzbMATHGoogle Scholar
  14. Rasiowa H (1974) An algebraic approach to non-classical logics. North-Holland, AmsterdamzbMATHGoogle Scholar
  15. Sankappanavar HP (2012) De Morgan algebras: new perspectives and applications. Sci Math Jpn 75(1):21–50MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Juan M. Cornejo
    • 1
    • 2
  • Hanamantagouda P. Sankappanavar
    • 3
    Email author
  1. 1.Departamento de MatemáticaUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.INMABB - CONICETBahía BlancaArgentina
  3. 3.Department of MathematicsState University of New YorkNew PaltzUSA

Personalised recommendations