Advertisement

Soft Computing

, Volume 22, Issue 24, pp 8341–8352 | Cite as

Optimized test suites for automated testing using different optimization techniques

  • Manju Khari
  • Prabhat Kumar
  • Daniel Burgos
  • Rubén González Crespo
Methodologies and Application

Abstract

Automated testing mitigates the risk of test maintenance failure, selects the optimized test suite, improves efficiency and hence reduces cost and time consumption. This paper is based on the development of an automated testing tool which includes two major automated components of software testing, test suite generation and test suite optimization. The control flow of the software under test has been represented by a flow graph. There are five test suite generation methods which are made available in the tool, namely boundary value testing, robustness testing, worst-case testing, robust worst-case testing and random testing. The generated test suite is further optimized to a desired fitness level using the artificial bee colony algorithm or the cuckoo search algorithm. The proposed method is able to provide a set of minimal test cases with maximum path coverage as compared to other algorithms. Finally, the generated optimal test suite is used for automated fault detection.

Keywords

Test suite generation Test suite optimization Flow graph Artificial bee colony algorithm Cuckoo search algorithm Automated testing 

Abbreviations

TSG

Test suite generation

TSO

Test suite optimization

ABC

Artificial bee colony

CSA

Cuckoo search algorithm

SUT

Software under test

N

Nodes

E

Edge

PSO

Particle swarm optimization

GA

Genetic algorithm

Notes

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Badlaney J, Ghatol R, Jadhwani R (2006) An introduction to data-flow testing. In: NCSU CSC TR-2006Google Scholar
  2. Barón HB, Crespo RG, Espada JP, Martínez OS (2015) Assessment of learning in environments interactive through fuzzy cognitive maps. Soft Comput. 19(4):1037–1050CrossRefGoogle Scholar
  3. Cabrerizo FJ, Moreno JM, Pérez IJ, Herrera-Viedma E (2010) Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput 14(5):451–463CrossRefGoogle Scholar
  4. Cabrerizo FJ, Chiclana F, Al-Hmouz R, Morfeq A, Balamash AS, Herrera-Viedma E (2015) Decision making and consensus: challenges. J Intell Fuzzy Syst 29(3):1109–1118MathSciNetCrossRefGoogle Scholar
  5. Chakri A, Khelif R, Benouaret M, Yang XS (2017) New directional bat algorithm for continuous optimization problems. Expert Syst Appl 69:159–175CrossRefGoogle Scholar
  6. Dash J, Dam B, Swain R (2016) Optimal design of linear phase multi-band stop filters using improved cuckoo search particle swarm optimization. Appl Soft Comput 52:435CrossRefGoogle Scholar
  7. Deason WH, Brown DB, Chang KH, Cross JH (1991) A rule-based software test data generator. IEEE Trans Knowl Data Eng 3(1):108–117CrossRefGoogle Scholar
  8. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1):17–35CrossRefGoogle Scholar
  9. Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimisation problems. Int J Math Model Numer Optim 4(2):150–194zbMATHGoogle Scholar
  10. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. In: Technical report-tr06, Erciyes University, engineering faculty, computer engineering department, vol 200Google Scholar
  11. Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Foundations of fuzzy logic and soft computing. Springer Berlin Heidelberg, pp 789–798Google Scholar
  12. Korel B (1990) Automated software test data generation. IEEE Trans Softw Eng 16(8):870–879CrossRefGoogle Scholar
  13. Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evolut Comput 7(1):19–44CrossRefGoogle Scholar
  14. Kumar A, Chakarverty S (2011) Design optimization using genetic algorithm and cuckoo search. In: 2011 IEEE international conference on electro/information technology (EIT), pp 1–5Google Scholar
  15. Luo J, Liu Q, Yang Y, Li X, Chen MR, Cao W (2016) An artificial bee colony algorithm for multi- objective optimisation. Appl. Softw Comput. doi: 10.1016/j.asoc.2016.11.014 CrossRefGoogle Scholar
  16. Mala DJ, Mohan V, Kamalapriya M (2010) Automated software test optimisation framework-an artificial bee colony optimisation-based approach. IET Softw 4(5):334–348CrossRefGoogle Scholar
  17. Malhotra R, Khari M (2014) Test suite optimization using mutated artificial bee colony. In: Proceedings of international conference on advances in communication, network, and computing, CNC, Elsevier, pp 45–54Google Scholar
  18. Meza J, Espitia H, Montenegro C, Crespo RG (2015) Statistical analysis of a multi-objective optimization algorithm based on a model of particles with vorticity behaviour. Softw Comput, pp 1–16Google Scholar
  19. Meza J, Espitia H, Montenegro C, Giménez E, González-Crespo R (2016) MOVPSO: vortex multi-objective particle swarm optimization. Appl Soft Comput 52:1042–1057CrossRefGoogle Scholar
  20. Morente-Molinera JA, Mezei J, Carlsson C, Herrera-Viedma E (2016) Improving supervised learning classification methods using multi-granular linguistic modelling and fuzzy entropy. In: IEEE transactions on fuzzy systemsGoogle Scholar
  21. Myers GJ (1979) The art of software testing. Wiley, HobokenGoogle Scholar
  22. Pérez LG, Mata F, Chiclana F, Kou G, Herrera-Viedma E (2016) Modelling influence in group decision making. Soft Comput 20(4):1653–1665CrossRefGoogle Scholar
  23. Radatz J, Geraci A, Katki F (1990) IEEE standard glossary of software engineering terminology. IEEE Std 610121990(121990):3Google Scholar
  24. Ramchoun H, Amine M, Idrissi J, Ghanou Y, Ettaouil M (2016) Multilayer perceptron: architecture optimization and training. In: International journal of interactive multimedia and artificial inteligence, vol 4(Special Issue on Artificial Intelligence Underpinning)Google Scholar
  25. Semwal VB, Singha J, Sharma PK, Chauhan A, Behera B (2016) An optimized feature selection technique based on incremental feature analysis for bio-metric gait data classification. In: Multimedia tools and applications, pp 1–19CrossRefGoogle Scholar
  26. Singh Y (2015) Automated expected output generation: is this a problem that has been solved? ACM SIGSOFT Softw Eng Notes 40(6):1–5CrossRefGoogle Scholar
  27. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214Google Scholar
  28. Yang XS, Deb S (2015) Cuckoo search for optimization and computational intelligence. In: IGI globalGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Manju Khari
    • 1
  • Prabhat Kumar
    • 1
  • Daniel Burgos
    • 2
  • Rubén González Crespo
    • 2
  1. 1.Ambedkar institute of Advanced Communication TechnologiesDelhiIndia
  2. 2.Universidad Internacional de La RiojaLogroñoSpain

Personalised recommendations