A quantum-inspired version of the nearest mean classifier

  • Giuseppe Sergioli
  • Enrica Santucci
  • Luca Didaci
  • Jarosław A. Miszczak
  • Roberto Giuntini
Foundations

Abstract

We introduce a framework suitable for describing standard classification problems using the mathematical language of quantum states. In particular, we provide a one-to-one correspondence between real objects and pure density operators. This correspondence enables us: (1) to represent the nearest mean classifier (NMC) in terms of quantum objects, (2) to introduce a quantum-inspired version of the NMC called quantum classifier (QC). By comparing the QC with the NMC on different datasets, we show how the first classifier is able to provide additional information that can be beneficial on a classical computer with respect to the second classifier.

Keywords

Bloch sphere Quantum classifier Non-standard application of quantum formalism 

References

  1. Aerts D, D’Hooghe B (2009) Classical logical versus quantum conceptual thought: examples in economics, decision theory and concept theory. Quantum interaction (Lecture Notes in Computer Science), vol 5494. Springer, Berlin, pp 128–142Google Scholar
  2. Aerts D, Gabora L, Sozzo S (2013) Concepts and their dynamics: a quantum-theoretic modeling of human thought. Top Cogn Sci 5(4):737–772Google Scholar
  3. Aharonov D, Kitaev A, Nisan N (1998) Quantum circuits with mixed states. In: Proceedings of the 30th annual ACM symposium on theory of computing, pp 20–30. ACMGoogle Scholar
  4. Barnett SM (2009) Quantum information, 16, Oxford Master Series in Physics. Oxford University Press, Oxford. Oxford Master Series in Atomic, Optical, and Laser PhysicsGoogle Scholar
  5. Beltrametti E, Chiara ML Dalla, Giuntini R, Leporini R, Sergioli G (2014a) A quantum computational semantics for epistemic logical operators. Part II: semantics. Int J Theor Phys 53(10):3293–3307MathSciNetCrossRefMATHGoogle Scholar
  6. Beltrametti E, Chiara ML Dalla, Giuntini R, Leporini R, Sergioli G (2014b) A quantum computational semantics for epistemic logical operators. Part I: epistemic structures. Int J Theor Phys 53(10):3279–3292MathSciNetCrossRefMATHGoogle Scholar
  7. Bennett CH, Shor PW (1998) Quantum information theory. IEEE Trans Inf Theory 44(6):2724–2724MathSciNetCrossRefMATHGoogle Scholar
  8. Bertlmann RA, Krammer P (2008) Bloch vectors for qudits. J Phys A 41(23):235303MathSciNetCrossRefMATHGoogle Scholar
  9. Caraiman S, Manta V (2012) Image processing using quantum computing. In: IEEE 16th international conference on system theory, control and computing (ICSTCC), 2012, pp 1–6Google Scholar
  10. Chefles A (2000) Quantum state discrimination. Contemp Phys 41(6):401–424. arXiv:quant-ph/0010114
  11. Chiang H-P, Chou Y-H, Chiu C-H, Kuo S-Y, Huang Y-M (2013) A quantum-inspired Tabu search algorithm for solving combinatorial optimization problems. Soft Comput 18(9):1771–1781CrossRefGoogle Scholar
  12. Coxeter HSM (1969) Introduction to geometry, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  13. Chiara ML Dalla, Giuntini R, Greechie R (2004) Reasoning in quantum theory: sharp and unsharp quantum logics, vol 22. Springer Science and Business Media, BerlinCrossRefMATHGoogle Scholar
  14. Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley Interscience, HobokenMATHGoogle Scholar
  15. Eisert J, Wilkens M, Lewenstein M (1999) Quantum games and quantum strategies. Phys Rev Lett 83(15):3077MathSciNetCrossRefMATHGoogle Scholar
  16. Eldar YC, Oppenheim AV (2002) Quantum signal processing. IEEE Sig Process Mag 19(6):12–32CrossRefGoogle Scholar
  17. Fawcet T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874CrossRefGoogle Scholar
  18. Freytes H, Sergioli G, Aricò A (2010) Representing continuous \(t\)-norms in quantum computation with mixed states. J Phys A 43(46):465306 12MathSciNetCrossRefMATHGoogle Scholar
  19. Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett 100(16):160501MathSciNetCrossRefMATHGoogle Scholar
  20. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, BerlinCrossRefMATHGoogle Scholar
  21. Hayashi A, Horibe M, Hashimoto T (2005) Quantum pure-state identification. Phys Rev A 72(5):052306MathSciNetCrossRefGoogle Scholar
  22. Helstrom CW (1976) Quantum detection and estimation theory. Academic Press, CambridgeMATHGoogle Scholar
  23. Jaeger G (2007) Quantum information. Springer, New York (An overview, With a foreword by Tommaso Toffoli)Google Scholar
  24. Jaeger G (2009) Entanglement, information, and the interpretation of quantum mechanics. Frontiers Collection. Springer, BerlinCrossRefGoogle Scholar
  25. Jakóbczyk L, Siennicki M (2001) Geometry of Bloch vectors in two-qubit system. Phys Lett A 286(6):383–390MathSciNetCrossRefMATHGoogle Scholar
  26. Karlıǧa B (1996) On the generalized stereographic projection. Beiträge Algebra Geom 37(2):329–336MathSciNetGoogle Scholar
  27. Kimura G (2003) The Bloch vector for N-level systems. Phys Lett A 314(56):339–349MathSciNetCrossRefMATHGoogle Scholar
  28. Kimura G, Kossakowski A (2005) The Bloch-vector space for N-level systems: the spherical-coordinate point of view. Open Syst Inf Dyn 12(03):207–229. arXiv:quant-ph/0408014
  29. Kolossa D, Haeb-Umbach R (2011) Robust speech recognition of uncertain or missing data: theory and applications. Springer Science and Business Media, BerlinCrossRefMATHGoogle Scholar
  30. Lloyd S, Mohseni M, Rebentrost P (2013) Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411
  31. Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nat Phys 10(9):631–633CrossRefGoogle Scholar
  32. Lu S, Braunstein SL (2014) Quantum decision tree classifier. Quantum Inf Process 13(3):757–770MathSciNetCrossRefMATHGoogle Scholar
  33. Manju A, Nigam MJ (2014) Applications of quantum inspired computational intelligence: a survey. Artif Intell Rev 42(1):79–156CrossRefGoogle Scholar
  34. Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval, vol 1. Cambridge university press, CambridgeCrossRefMATHGoogle Scholar
  35. Miszczak JA (2012) High-level structures for quantum computing, 6 synthesis (Lectures on Quantum Computing). Morgan and Claypool Publishers, San RafaelGoogle Scholar
  36. Nagel E (1963) Assumptions in economic theory. Am Econ Rev 53(2):211–219Google Scholar
  37. Nagy M, Nagy N (2016) Quantum-based secure communications with no prior key distribution. Soft Comput 20(1):87–101CrossRefGoogle Scholar
  38. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, CambridgeMATHGoogle Scholar
  39. Ohya M, Volovich I (2011) Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems. Theoretical and Mathematical Physics. Springer, DordrechtMATHGoogle Scholar
  40. Ostaszewski M, Sadowski P, Gawron P (2015) Quantum image classification using principal component analysis. Theor Appl Inf 27:3. arXiv:1504.00580
  41. Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big feature and big data classification. Phys Rev Lett 113:130503CrossRefGoogle Scholar
  42. Sause MGR, Horn S (2013) Quantification of the uncertainty of pattern recognition approaches applied to acoustic emission signals. J Nondestruct Eval 32(3):242–255CrossRefGoogle Scholar
  43. Schuld M, Sinayskiy I, Petruccione F (2014a) An introduction to quantum machine learning. Contemp Phys 56(2). arXiv:1409.3097
  44. Schuld M, Sinayskiy I, Petruccione F(2014b) Quantum computing for pattern classification. In: PRICAI 2014: trends in artificial intelligence, pp 208–220. SpringerGoogle Scholar
  45. Schuld M, Sinayskiy I, Petruccione F (2014c) The quest for a quantum neural network. Quantum Inf Process 13(11):2567–2586MathSciNetCrossRefMATHGoogle Scholar
  46. Schwartz JM, Stapp HP, Beauregard M (2005) Quantum physics in neuroscience and psychology: a neurophysical model of mind-brain interaction. Philos Trans R Soc B Biol Sci 360(1458):1309–1327CrossRefGoogle Scholar
  47. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656MathSciNetCrossRefMATHGoogle Scholar
  48. Sozzo S (2015) Effectiveness of the quantum-mechanical formalism in cognitive modeling. Soft Comput. doi:10.1007/s00500-015-1834-y
  49. Stapp HP (1993) Mind, matter, and quantum mechanics. Springer, BerlinCrossRefMATHGoogle Scholar
  50. Tanaka K, Tsuda K (2008) A quantum-statistical-mechanical extension of gaussian mixture model. J Phys Conf Ser 95(1):012023CrossRefGoogle Scholar
  51. Trugenberger CA (2002) Quantum pattern recognition. Quantum Inf Process 1(6):471–493MathSciNetCrossRefGoogle Scholar
  52. Webb AR, Copsey KD (2011) Statistical pattern recognition, 3rd edn. Wiley, New YorkCrossRefMATHGoogle Scholar
  53. Wiebe N, Kapoor A, Svore KM (2015) Quantum nearest-neighbor algorithms for machine learning. Quantum Inf Comput 15(34):0318–0358MathSciNetGoogle Scholar
  54. Wilde MM (2013) Quantum Inf Theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  55. Wittek P (2014) Quantum machine learning: what quantum computing means to data mining. Academic Press, CambridgeMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Università di CagliariCagliariItaly
  2. 2.Institute of Theoretical and Applied InformaticsPolish Academy of SciencesGliwicePoland

Personalised recommendations