Soft Computing

, Volume 22, Issue 4, pp 1335–1349 | Cite as

Adaptive harmony search with best-based search strategy

  • Zhaolu Guo
  • Huogen Yang
  • Shenwen Wang
  • Caiying Zhou
  • Xiaosheng Liu
Methodologies and Application

Abstract

Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS.

Keywords

Evolutionary algorithm Harmony search Adaptive Search strategy 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Nos. 61662029, 61462036, and 41561091), the Natural Science Foundation of Jiangxi, China (Nos. 20151BAB217010 and 20151BAB201015), and the Education Department Scientific Research Foundation of Jiangxi Province, China (No. GJJ14433).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants.

References

  1. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Global Optim 31(4):635–672MathSciNetCrossRefMATHGoogle Scholar
  2. Amaya I, Cruz J, Correa R (2015) Harmony search algorithm: a variant with self-regulated fretwidth. Appl Math Comput 266:1127–1152MathSciNetCrossRefGoogle Scholar
  3. Brest J, Greiner S, Bošković B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10(6):646–657CrossRefGoogle Scholar
  4. Chakraborty P, Roy GG, Das S, Jain D, Abraham A (2009) An improved harmony search algorithm with differential mutation operator. Fundamenta Informaticae 95(4):401–426MathSciNetMATHGoogle Scholar
  5. Chauhan A, Saini RP (2016) Discrete harmony search based size optimization of integrated renewable energy system for remote rural areas of uttarakhand state in india. Renew Energy 94:587–604CrossRefGoogle Scholar
  6. Chen J, Pan Qk, Li JQ (2012) Harmony search algorithm with dynamic control parameters. Appl Math Comput 219(2):592–604MathSciNetMATHGoogle Scholar
  7. Cobos C, Estupiñán D, Pérez J (2011) Ghs+ lem: global-best harmony search using learnable evolution models. Appl Math Comput 218(6):2558–2578MathSciNetMATHGoogle Scholar
  8. Contreras J, Amaya I, Correa R (2014) An improved variant of the conventional harmony search algorithm. Appl Math Comput 227:821–830MathSciNetMATHGoogle Scholar
  9. Dai X, Yuan X, Zhang Z (2015) A self-adaptive multi-objective harmony search algorithm based on harmony memory variance. Appl Soft Comput 35:541–557CrossRefGoogle Scholar
  10. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evolut Comput 15(1):4–31CrossRefGoogle Scholar
  11. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evolut Comput 6(2):182–197CrossRefGoogle Scholar
  12. El-Abd M (2013) An improved global-best harmony search algorithm. Appl Math Comput 222:94–106MATHGoogle Scholar
  13. Fogel DB (1994) An introduction to simulated evolutionary optimization. IEEE Trans Neural Netw 5(1):3–14CrossRefGoogle Scholar
  14. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35CrossRefGoogle Scholar
  15. Gao KZ, Suganthan PN, Pan QK, Tasgetiren MF (2015a) An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time. Int J Prod Res 53(19):5896–5911CrossRefGoogle Scholar
  16. Gao XZ, Wang X, Ovaska SJ, Zenger K (2012) A hybrid optimization method of harmony search and opposition-based learning. Eng Optim 44(8):895–914CrossRefGoogle Scholar
  17. Gao XZ, Wang X, Zenger K (2015b) A memetic-inspired harmony search method in optimal wind generator design. Int J Mach Learn Cybern 6(1):43–58CrossRefGoogle Scholar
  18. García-Segura T, Yepes V, Alcalá J, Pérez-López E (2015) Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Eng Struct 92:112–122CrossRefGoogle Scholar
  19. Geem ZW, Sim KB (2010) Parameter-setting-free harmony search algorithm. Appl Math Comput 217(8):3881–3889MathSciNetCrossRefMATHGoogle Scholar
  20. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRefGoogle Scholar
  21. Gong W, Cai Z, Ling CX, Li H (2011) Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans Syst Man Cybern Part B Cybern 41(2):397–413CrossRefGoogle Scholar
  22. Gu B, Sheng VS (2016) A robust regularization path algorithm for \(\nu \)-support vector classification. In: IEEE Transactions on Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2016.2527796 (in press)
  23. Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for \(\nu \)-support vector regression. Neural Netw 67:140–150CrossRefGoogle Scholar
  24. Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. In: IEEE Transactions on Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2016.2544779 (in press)
  25. Guo Z, Yue X, Zhang K, Wang S, Wu Z (2014) A thermodynamical selection-based discrete differential evolution for the 0–1 knapsack problem. Entropy 16(12):6263–6285CrossRefGoogle Scholar
  26. Guo Z, Huang H, Deng C, Yue X, Wu Z (2015) An enhanced differential evolution with elite chaotic local search. In: Computational intelligence and neuroscience, Article ID 583759Google Scholar
  27. Guo Z, Huang H, Yang H, Wang S, Wang H (2015b) An enhanced gravitational search algorithm for global optimisation. Int J Wirel Mobile Comput 9(3):273–280CrossRefGoogle Scholar
  28. Guo Z, Yue X, Zhang K, Deng C, Liu S (2015c) Enhanced social emotional optimisation algorithm with generalised opposition-based learning. Int J Comput Sci Math 6(1):59–68MathSciNetCrossRefGoogle Scholar
  29. Han KH, Kim JH (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evolut Comput 6(6):580–593CrossRefGoogle Scholar
  30. Hasan BHF, Doush IA, Al Maghayreh E, Alkhateeb F, Hamdan M (2014) Hybridizing harmony search algorithm with different mutation operators for continuous problems. Appl Math Comput 232:1166–1182MathSciNetCrossRefGoogle Scholar
  31. He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evolut Comput 13(5):973–990CrossRefGoogle Scholar
  32. Inbarani HH, Bagyamathi M, Azar AT (2015) A novel hybrid feature selection method based on rough set and improved harmony search. Neural Comput Appl 26(8):1859–1880CrossRefGoogle Scholar
  33. Jeddi B, Vahidinasab V (2014) A modified harmony search method for environmental/economic load dispatch of real-world power systems. Energy Convers Manag 78:661–675CrossRefGoogle Scholar
  34. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Global Optim 39(3):459–471MathSciNetCrossRefMATHGoogle Scholar
  35. Kattan A, Abdullah R (2013) A dynamic self-adaptive harmony search algorithm for continuous optimization problems. Appl Math Comput 219(16):8542–8567MathSciNetMATHGoogle Scholar
  36. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948Google Scholar
  37. Khalili M, Kharrat R, Salahshoor K, Sefat MH (2014) Global dynamic harmony search algorithm: GDHS. Appl Math Comput 228:195–219MathSciNetMATHGoogle Scholar
  38. Kong X, Gao L, Ouyang H, Li S (2015a) A simplified binary harmony search algorithm for large scale 0–1 knapsack problems. Expert Syst Appl 42(12):5337–5355CrossRefGoogle Scholar
  39. Kong X, Gao L, Ouyang H, Li S (2015b) Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm. Comput Oper Res 63:7–22MathSciNetCrossRefMATHGoogle Scholar
  40. Kumar V, Chhabra JK, Kumar D (2014) Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems. J Comput Sci 5(2):144–155MathSciNetCrossRefGoogle Scholar
  41. Lam AYS, Li VOK (2010) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evolut Comput 14(3):381–399CrossRefGoogle Scholar
  42. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10(3):281–295CrossRefGoogle Scholar
  43. Ma T, Zhou J, Tang M, Tian Y, Al-Dhelaan A, Al-Rodhaan M, Lee S (2015) Social network and tag sources based augmenting collaborative recommender system. IEICE Trans Inf Syst 98(4):902–910CrossRefGoogle Scholar
  44. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579MathSciNetMATHGoogle Scholar
  45. Manjarres D, Landa-Torres I, Gil-Lopez S, Del Ser J, Bilbao MN, Salcedo-Sanz S, Geem ZW (2013) A survey on applications of the harmony search algorithm. Eng Appl Artif Intell 26(8):1818–1831CrossRefGoogle Scholar
  46. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evolut Comput 8(3):204–210CrossRefGoogle Scholar
  47. Naik B, Nayak J, Behera HS, Abraham A (2016) A self adaptive harmony search based functional link higher order ann for non-linear data classification. Neurocomputing 179:69–87CrossRefGoogle Scholar
  48. Nekkaa M, Boughaci D (2016) Hybrid harmony search combined with stochastic local search for feature selection. Neural Process Lett 44(1):199–220CrossRefGoogle Scholar
  49. Niu Q, Zhang H, Li K, Irwin GW (2014a) An efficient harmony search with new pitch adjustment for dynamic economic dispatch. Energy 65:25–43CrossRefGoogle Scholar
  50. Niu Q, Zhang H, Wang X, Li K, Irwin GW (2014b) A hybrid harmony search with arithmetic crossover operation for economic dispatch. Int J Electr Power Energy Syst 62:237–257CrossRefGoogle Scholar
  51. Omran MGH, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198(2):643–656MathSciNetCrossRefMATHGoogle Scholar
  52. Ouyang HB, Gao LQ, Li S, Kong XY (2015) Improved novel global harmony search with a new relaxation method for reliability optimization problems. Inf Sci 305:14–55CrossRefGoogle Scholar
  53. Pan QK, Suganthan PN, Tasgetiren MF, Liang JJ (2010) A self-adaptive global best harmony search algorithm for continuous optimization problems. Appl Math Comput 216(3):830–848MathSciNetCrossRefMATHGoogle Scholar
  54. Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176CrossRefGoogle Scholar
  55. Papa JP Scheirer W, Cox DD (2015) Fine-tuning deep belief networks using harmony search. Appl Soft Comput 46:875–885Google Scholar
  56. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13(2):398–417CrossRefGoogle Scholar
  57. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248CrossRefMATHGoogle Scholar
  58. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evolut Comput 8(3):240–255CrossRefGoogle Scholar
  59. Shen J, Tan H, Wang J, Wang J, Lee S (2015) A novel routing protocol providing good transmission reliability in underwater sensor networks. J Internet Technol 16(1):171–178Google Scholar
  60. Shiva CK, Mukherjee V (2015) A novel quasi-oppositional harmony search algorithm for automatic generation control of power system. Appl Soft Comput 35:749–765CrossRefGoogle Scholar
  61. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MathSciNetCrossRefMATHGoogle Scholar
  62. Turky AM, Abdullah S (2014) A multi-population harmony search algorithm with external archive for dynamic optimization problems. Inf Sci 272:84–95CrossRefGoogle Scholar
  63. Valian E, Tavakoli S, Mohanna S (2014) An intelligent global harmony search approach to continuous optimization problems. Appl Math Comput 232:670–684MathSciNetGoogle Scholar
  64. Wang CM, Huang YF (2010) Self-adaptive harmony search algorithm for optimization. Expert Syst Appl 37(4):2826–2837CrossRefGoogle Scholar
  65. Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013a) Hybridizing harmony search with biogeography based optimization for global numerical optimization. J Comput Theor Nanosci 10(10):2312–2322CrossRefGoogle Scholar
  66. Wang GG, Gandomi AH, Zhao X, Chu HCE (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285CrossRefGoogle Scholar
  67. Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181(20):4699–4714MathSciNetCrossRefGoogle Scholar
  68. Wang H, Sun H, Li C, Rahnamayan S, Pan JS (2013b) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135MathSciNetCrossRefGoogle Scholar
  69. Wang H, Wu Z, Rahnamayan S, Sun H, Liu Y, Pan JS (2014) Multi-strategy ensemble artificial bee colony algorithm. Inf Sci 279:587–603MathSciNetCrossRefMATHGoogle Scholar
  70. Wang L, Yang R, Xu Y, Niu Q, Pardalos PM, Fei M (2013c) An improved adaptive binary harmony search algorithm. Inf Sci 232:58–87MathSciNetCrossRefGoogle Scholar
  71. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406CrossRefGoogle Scholar
  72. Xiang WL, An MQ, Li YZ, He RC, Zhang JF (2014) An improved global-best harmony search algorithm for faster optimization. Expert Syst Appl 41(13):5788–5803CrossRefGoogle Scholar
  73. Yadav P, Kumar R, Panda SK, Chang CS (2012) An intelligent tuned harmony search algorithm for optimisation. Inf Sci 196:47–72CrossRefGoogle Scholar
  74. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3(2):82–102CrossRefGoogle Scholar
  75. Yuan X, Zhao J, Yang Y, Wang Y (2014) Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl Soft Comput 17:12–22CrossRefGoogle Scholar
  76. Zhan ZH, Zhang J, Li Y, Shi YH (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evolut Comput 15(6):832–847CrossRefGoogle Scholar
  77. Zhang B, Pan QK, Zhang XL, Duan PY (2015) An effective hybrid harmony search-based algorithm for solving multidimensional knapsack problems. Appl Soft Comput 29:288–297CrossRefGoogle Scholar
  78. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958CrossRefGoogle Scholar
  79. Zhao SZ, Suganthan PN, Pan QK, Tasgetiren MF (2011) Dynamic multi-swarm particle swarm optimizer with harmony search. Expert Syst Appl 38(4):3735–3742Google Scholar
  80. Zheng L, Diao R, Shen Q (2015a) Self-adjusting harmony search-based feature selection. Soft Comput 19(6):1567–1579CrossRefGoogle Scholar
  81. Zheng Y, Jeon B, Xu D, Wu QM, Zhang H (2015b) Image segmentation by generalized hierarchical fuzzy c-means algorithm. J Intell Fuzzy Syst 28(2):961–973Google Scholar
  82. Zou D, Gao L, Wu J, Li S (2010) Novel global harmony search algorithm for unconstrained problems. Neurocomputing 73(16):3308–3318CrossRefGoogle Scholar
  83. Zou D, Gao L, Li S, Wu J (2011) Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl Soft Comput 11(2):1556–1564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhaolu Guo
    • 1
  • Huogen Yang
    • 1
  • Shenwen Wang
    • 2
  • Caiying Zhou
    • 1
  • Xiaosheng Liu
    • 3
  1. 1.Institute of Medical Informatics and Engineering, School of ScienceJiangXi University of Science and TechnologyGanzhouChina
  2. 2.School of Information EngineeringHebei GEO UniversityShijiazhuangChina
  3. 3.School of Architectural and Surveying and Mapping EngineeringJiangXi University of Science and TechnologyGanzhouChina

Personalised recommendations