Soft Computing

, Volume 21, Issue 21, pp 6481–6497 | Cite as

Multi-objective multi-robot deployment in a dynamic environment

  • Reza Javanmard Alitappeh
  • Kossar Jeddisaravi
  • Frederico G. Guimarães
Methodologies and Application

Abstract

Finding a distribution of a group of robots in an environment is known as Deployment problem, which is one of the challenges in multi-robot systems. In real applications, the environment may change over time and thus deployment must be repeated periodically in order to redistribute the robots. In this paper, we propose a multi-objective optimization method to deploy/redeploy robots in the environment by considering two objectives for the deployment. One objective represents a good estimation of final positions, where the robots will be located, while the second objective is finding the shortest path from the robots initial location to these positions. Thus, our problem is modeled as a multi-objective optimization problem, which is approached with a multi-objective optimization evolutionary algorithm. To deal with the deployment problem, a discrete setup of locational optimization framework and Voronoi partitioning technique are employed. Simulation results on real application testify the performance of our proposed method in comparison with other methods.

Keywords

Multi-robot deployment Multi-objective optimization Voronoi partitioning 

References

  1. Ahmed F, Deb K (2013) Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms. Soft Comput 17(7):1283–1299CrossRefGoogle Scholar
  2. Alitappeh RJ, Pimenta LCA (2016) Distributed safe deployment of networked robots. Distrib Auton Robot Syst Springer Tracts Adv Robot 112:65–77CrossRefGoogle Scholar
  3. Belta C, Kumar V (2004) Abstraction and control for groups of robots. IEEE Trans Robot 20(5):865–875CrossRefGoogle Scholar
  4. Bhattacharya S, Ghrist R, Kumar V (2013a) Multi-robot coverage and exploration in non-euclidean metric spaces. Algorithm Found Robot X Springer Tracts Adv Robot 86:245–262CrossRefGoogle Scholar
  5. Bhattacharya S, Ghrist R, Kumar V (2013b) Multi-robot coverage and exploration on Riemannian manifolds with boundaries. Int J Robot Res 33(1):113–137CrossRefGoogle Scholar
  6. Bhattacharya S, Michael N, Kumar V (2013c) Distributed coverage and exploration in unknown non-convex environments. Distrib Auton Robot Syst Springer Tracts Adv Robot 83:61–75CrossRefGoogle Scholar
  7. Brimberg J, Drezner Z (2013) A new heuristic for solving the p-median problem in the plane. Comput Oper Res 40(1):427–437MathSciNetCrossRefMATHGoogle Scholar
  8. Budiharto W, Santoso A, Purwanto D, Jazidie A (2011) a method for path planning strategy and navigation of service robot. Paladyn J Behav Robot 2(2):100–108Google Scholar
  9. Chaimowicz L, Cowley A, Gomez-Ibanez D, Grocholsky B, Hsieh MA, Hsu H, Keller JF, Kumar V, Swaminathan R, Taylor CJ (2005) Multi-robot systems. From swarms to intelligent automata. In: Proceedings from the 2005 international workshop on multi-robot systems, vol III, Springer, Netherlands, Dordrecht, chap Deploying air-ground multi-robot teams in urban environments, pp 223–234Google Scholar
  10. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The MIT Press, London, p 1312Google Scholar
  11. Cortes J, Martinez S, Karatas T, Bullo F (2004) Coverage control for mobile sensing networks. IEEE Trans Robot Autom 20(2):243–255CrossRefGoogle Scholar
  12. Davoodi M, Panahi F, Mohades A, Hashemi SN (2013) Multi-objective path planning in discrete space. Appl Soft Comput 13(1):709–720CrossRefGoogle Scholar
  13. Davoodi M, Panahi F, Mohades A, Hashemi SN (2015) Clear and smooth path planning. Appl Soft Comput 32:568–579CrossRefGoogle Scholar
  14. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  15. Dijkstra E (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271MathSciNetCrossRefMATHGoogle Scholar
  16. Durham JW, Carli R (2012) Discrete partitioning and coverage control for gossiping robots. IEEE Trans Robot 28(2):364–378CrossRefGoogle Scholar
  17. Figueira J, Greco S, Ehrogott M (2005) Multiple criteria decision analysis: state of the art surveys series. Int Ser Oper Res Manag Sci 78:1048Google Scholar
  18. Fjallstrom PO (1998) Algorithms for graph partitioning: a survey. Linkop Electron Artic Comput Inf Sci 3(10)Google Scholar
  19. Fleszar K, Hindi KS (2008) An effective VNS for the capacitated p-median problem. Eur J Oper Res 191:612–622CrossRefMATHGoogle Scholar
  20. Friedrich T, Kroeger T, Neumann F (2013) Weighted preferences in evolutionary multi-objective optimization. Int J Mach Learn Cybern 4(2):139–148CrossRefGoogle Scholar
  21. Gabriely Y, Rimon E (2001) Spanning-tree based coverage of continuous areas by a mobile robot. Ann Math Artif Intell 31(1–4):77–98CrossRefMATHGoogle Scholar
  22. Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-means clustering algorithm. R Stat Soc Ser C (Appl Stat) 28(2):100–108MATHGoogle Scholar
  23. Hidalgo-Paniagua A, Vega-Rodrguez M, Ferruz J, Pavn N (2015) Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach. Soft Comput 1–16Google Scholar
  24. Holder A, Lim G, Reese J (2007) The relationship between discrete vector quantization and the p-median problem. Technical reportGoogle Scholar
  25. Huang HC (2013) Intelligence motion control for omnidirectional mobile robots using ant colony optimization. Appl Artif Intell Int J 27(3):151–169CrossRefGoogle Scholar
  26. Ioannidisa K, Sirakoulisa GC, Andreadis I (2011) A path planning method based on cellular automata for cooperative robots. Appl Artif Intell Int J 25(8):721–745CrossRefGoogle Scholar
  27. Jeddisaravi K, Alitappeh RJ, Pimenta LCA, Guimarães FG (2016) Multi-objective approach for robot motion planning in search tasks. Appl Intell 1–17. doi:10.1007/s10489-015-0754-y
  28. Jensen M (2003) Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans Evolut Comput 7(5):503–515CrossRefGoogle Scholar
  29. Ji M, Egerstedt M (2007) Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans Robot 23(4):693–703CrossRefGoogle Scholar
  30. King R, Rughooputh H (2003) Elitist multiobjective evolutionary algorithm for environmental/economic dispatch. In: Evolutionary computation, 2003. CEC ’03. The 2003 Congress on, vol 2, IEEE, pp 1108–1114Google Scholar
  31. Klein PN (2005) Multiple-source shortest paths in planar graphs. In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA ’05), pp 146–155Google Scholar
  32. Knowles J, Corne D (1999) The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation, 1999 CEC 99, vol 1, pp 98–105Google Scholar
  33. Landa-Torres I, Del Ser J, Salcedo-Sanz S, Gil-Lopez S, Ja Portilla-Figueras, Alonso-Garrido O (2012) A comparative study of two hybrid grouping evolutionary techniques for the capacitated P-median problem. Comput Oper Res 39(9):2214–2222MathSciNetCrossRefMATHGoogle Scholar
  34. Lim GJ, Reese J, Holder A (2009) Fast and robust techniques for the euclidean p-median problem with uniform weights. Comput Ind Eng 57:896–905CrossRefGoogle Scholar
  35. Liu M, Zeng W (2010) Reducing the run-time complexity of NSGA-II for bi-objective optimization problem. In: Proceedings of IEEE international conference on intelligent computing and intelligent systems, IEEE, vol 2, pp 546–549Google Scholar
  36. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137MathSciNetCrossRefMATHGoogle Scholar
  37. Ma CC, Ayala-Ramirez V, Hernandez-Belmonte UH (2015) Mobile robot path planning using artificial bee colony and evolutionary programming. Appl Soft Comput 30:319–328CrossRefGoogle Scholar
  38. Marler R, Arora J (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395MathSciNetCrossRefMATHGoogle Scholar
  39. Nowzari C, Cortés J (2012) Self-triggered coordination of robotic networks for optimal deployment. Automatica 48(6):1077–1087MathSciNetCrossRefMATHGoogle Scholar
  40. Ortiza JAH, Rodríguez-Vázqueza K, Castañedab MAP, Cosíoa FA (2013) Autonomous robot navigation based on the evolutionary multi-objective optimization of potential fields. Eng Optim 45(1):19–43MathSciNetCrossRefGoogle Scholar
  41. Parker LE (2002) Distributed algorithms for multi-robot observation of multiple moving targets. Auton Robots 12(3):231–255CrossRefMATHGoogle Scholar
  42. Pimenta LCA, Kumar V, Mesquita RC, Pereira GAS (2008) Sensing and coverage for a network of heterogeneous robots. In: Proceedings of IEEE conference on decision and control (CDC), vol 2, pp 3947–3952Google Scholar
  43. Poduri S, Sukhatme GS (2004) Constrained coverage for mobile sensor networks. In: Proceedings of IEEE international conference on robotics and automation (ICRA), IEEE, pp 165–171Google Scholar
  44. Reese J (2006) Solution methods for the p-median problem: an annotated bibliography. Networks 48(3):125–142MathSciNetCrossRefMATHGoogle Scholar
  45. Reif J, Wang H (1999) Social potential fields: a distributed behavioral control for autonomous robots. Robot Auton Syst 27(3):171–194CrossRefGoogle Scholar
  46. Resende MGC, Werneck RF (2004) A hybrid heuristic for the p-median problem. J Heuristics 10(1):59–88CrossRefMATHGoogle Scholar
  47. Roy B (1968) Classement et choix en présence de points de vue multiples (la méthode ELECTRE). La Revue d’Informatique et de Recherche Opérationelle (RIRO) 8:57–75Google Scholar
  48. Senne ELF, LaN Lorena, Ma Pereira (2005) A branch-and-price approach to p-median location problems. Comput Oper Res 32:1655–1664MathSciNetCrossRefGoogle Scholar
  49. Senthilkumar K, Bharadwaj K (2012) Multi-robot exploration and terrain coverage in an unknown environment. Robot Auton Syst 60(1):123–132CrossRefGoogle Scholar
  50. Stergiopoulos Y, Tzes A (2011) Coverage-oriented coordination of mobile heterogeneous networks. In: Proceedings of mediterranian control & automation (MED) pp 175–180Google Scholar
  51. Tzes A, Stergiopoulos Y (2010) Convex Voronoi-inspired space partitioning for heterogeneous networks: a coverage-oriented approach. IET Control Theory Appl 4(12):2802–2812Google Scholar
  52. Veloso M, Biswas J, Coltin B, Rosenthal S, Brandao S, Mericli T, Ventura R (2012) Symbiotic-autonomous service robots for userrequested tasks in a multi-floor building. In: Proceedings of the cognitive assistive systems workshop, IROS 2012Google Scholar
  53. Wanga X, Shia Y, Dingb D, Gua X (2015) Double global optimum genetic algorithm particle swarm optimization based welding robot path planning. J Eng Opt 48:1–18MathSciNetGoogle Scholar
  54. Xue Y, Liu H (2010) Optimal path planning for service robot in indoor environment. In: Proceedings of international conference on intelligent computation technology and automation (ICICTA), IEEE, vol 2, pp 850–853Google Scholar
  55. Yaghini M, Karimi M, Rahbar M (2013) A hybrid metaheuristic approach for the capacitated p-median problem. Appl Soft Comput 13(9):3922–3930CrossRefGoogle Scholar
  56. Yun S, Rus D (2013) Distributed coverage with mobile robots on a graph: locational optimization and equal-mass partitioning. Robotica 32(02):257–277CrossRefGoogle Scholar
  57. Zhang Y, Gong D, Zhang J (2012) Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103:172–185CrossRefGoogle Scholar
  58. Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength Pareto evolutionary algorithm. In: Proceedings of the evolutionary methods for design, optimisation, and control, pp 95–100Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Reza Javanmard Alitappeh
    • 1
  • Kossar Jeddisaravi
    • 1
  • Frederico G. Guimarães
    • 1
  1. 1.Universidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations