Advertisement

Soft Computing

, Volume 21, Issue 17, pp 5133–5144 | Cite as

Multimodal biometric system based on information set theory and refined scores

  • Parul AroraEmail author
  • Sandeep Bhargava
  • Smriti Srivastava
  • Madasu Hanmandlu
Methodologies and Application

Abstract

This paper presents the development of a multimodal biometric system comprising a behavioral biometric called gait and a physiological biometric called hand vein pattern. Toward the unified feature extraction, we use the information set approach to represent the frame of a gait sequence by the feature called the effective gait information and the vein pattern image by the feature called the effective vein information using the Hanman–Anirban entropy function. Using these two features for the two modalities, we go in for the score level fusion which gives a limited accuracy. In order to improve the performance refined scores approach is proposed where in the original scores are refined by using the cohort (neighborhood) scores. The performance of the proposed approach is demonstrated on two databases.

Keywords

Multimodal system Hanman–Anirban entropy function Gait Veins Information set Refined scores Score level fusion 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aghakabi A, Zokaee S (2011) Fusing dorsal hand vein and ecg for personal identification. In: 2011 international conference on electrical and control engineering (ICECE). IEEE, Yichang, pp 5933–5936Google Scholar
  2. Arora P, Hanmandlu M, Srivastava S (2015) Gait based authentication using gait information image features. Pattern Recognit Lett 68:336–342CrossRefGoogle Scholar
  3. Bashir K, Xiang T, Gong S (2009) Gait recognition using gait entropy image. In: 3rd international conference on imaging for crime detection and prevention. IET, London, pp 1–6Google Scholar
  4. Finan R, Sapeluk A, Damper RI (1997) Impostor cohort selection for score normalisation in speaker verification. Pattern Recognit Lett 18(9):881–888CrossRefGoogle Scholar
  5. Guan Y, Li C, Roli F (2015) On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. Pattern Anal Mach Intell IEEE Trans 37(7):1521–1528CrossRefGoogle Scholar
  6. Gudavalli M, Babu A, Raju S, Kumar DS (2012) Multimodal biometrics-sources, architecture and fusion techniques: an overview. In: 2012 international symposium on biometrics and security technologies (ISBAST). IEEE, Taipei, pp 27–34Google Scholar
  7. Han J, Bhanu B (2006) Individual recognition using gait energy image. Pattern Anal Mach Intell IEEE Trans 28(2):316–322CrossRefGoogle Scholar
  8. Hanmandlu M (2011) Information sets and information processing. Def Sci J 61(5):405–407CrossRefGoogle Scholar
  9. Hanmandlu M, Das A (2011) Content-based image retrieval by information theoretic measure. Def Sci J 61(5):415–430CrossRefGoogle Scholar
  10. Hanmandlu M, Grover J, Madasu VK, Vasirkala S (2010) Score level fusion of hand based biometrics using t-norms. In: 2010 IEEE international conference on technologies for homeland security (HST). IEEE, Waltham, pp 70–76Google Scholar
  11. Hanmandlu M, Grover J, Gureja A, Gupta HM (2011) Score level fusion of multimodal biometrics using triangular norms. Pattern Recognit Lett 32(14):1843–1850CrossRefGoogle Scholar
  12. Huang D, Tang Y, Wang Y, Ln Chen (2015) Hand-dorsa vein recognition by matching local features of multisource keypoints. Cybern IEEE Trans 45(9):1823–1837CrossRefGoogle Scholar
  13. Jain AK, Ross A (2004) Multibiometric systems. Commun ACM 47(1):34–40CrossRefGoogle Scholar
  14. Jain A, Nandakumar K, Ross A (2005) Score normalization in multimodal biometric systems. Pattern Recognit 38(12):2270–2285CrossRefGoogle Scholar
  15. Kocer HE, Tutumlu H, Allahverdi N (2012) An efficient hand dorsal vein recognition based on neural networks. J Selcuk Univ Nat Appl Sci 1(3):28Google Scholar
  16. Kusakunniran W (2014) Recognizing gaits on spatio-temporal feature domain. Inf Forensics Secur IEEE Trans 9(9):1416–1423CrossRefGoogle Scholar
  17. Lai Z, Xu Y, Jin Z, Zhang D (2014) Human gait recognition via sparse discriminant projection learning. Circuits Syst Video Technol IEEE Trans 24(10):1651–1662CrossRefGoogle Scholar
  18. Lajevardi SM, Arakala A, Davis S, Horadam KJ (2014) Hand vein authentication using biometric graph matching. IET Biom 3(4):302–313CrossRefGoogle Scholar
  19. Little J, Boyd J (1998) Recognizing people by their gait: the shape of motion. Videre J CompUT Vis Res 1(2):1–32Google Scholar
  20. Moutafis P, Kakadiaris I (2014) Can we do better in unimodal biometric systems? A rank-based score normalization framework. Cybern IEEE Trans 45(12):2654–2667CrossRefGoogle Scholar
  21. Muramatsu D, Shiraishi A, Makihara Y, Uddin MZ, Yagi Y (2015) Gait-based person recognition using arbitrary view transformation model. Image Process IEEE Trans 24(1):140–154MathSciNetCrossRefGoogle Scholar
  22. Novák V, Pedrycz W (1988) Fuzzy sets and \(t\)-norms in the light of fuzzy logic. Int J Man Mach Stud 29(2):113–127CrossRefzbMATHGoogle Scholar
  23. Pal NR, Pal SK (1992) Some properties of the exponential entropy. Inf Sci 66(1):119–137MathSciNetCrossRefzbMATHGoogle Scholar
  24. Patil CM, Patilkulkarni S (2010) A comparative study of feature extraction approaches for an efficient iris recognition system. In: Inf process manag, communications in computer and information science, vol 70. Springer, Berlin, pp 411–416Google Scholar
  25. Poh N, Merati A, Kittler J (2009a) Adaptive client-impostor centric score normalization: a case study in fingerprint verification. In: 3rd international conference on biometrics: theory, applications, and systems (BTAS’09). IEEE, Washington, pp 1–7Google Scholar
  26. Poh N, Merati A, Kittler J (2009b) Making better biometric decisions with quality and cohort information: a case study in fingerprint verification. In: Signal processing conference, 2009 17th European. IEEE, Glasgow, pp 70–74Google Scholar
  27. Premalatha K, Natarajan A et al (2014) A dorsal hand vein recognition-based on local gabor phase quantization with whitening transformation. Def Sci J 64(2):159–167Google Scholar
  28. Ross A, Jain A (2003) Information fusion in biometrics. Pattern Recognit Lett 24(13):2115–2125Google Scholar
  29. Sarkar S, Phillips PJ, Liu Z, Vega IR, Grother P, Bowyer KW (2005) The humanid gait challenge problem: data sets, performance, and analysis. Pattern Anal Mach Intell IEEE Trans 27(2):162–177CrossRefGoogle Scholar
  30. Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev 5(1):3–55MathSciNetCrossRefGoogle Scholar
  31. Trabelsi RB, Masmoudi AD, Masmoudi DS (2014) Hand vein recognition system with circular difference and statistical directional patterns based on an artificial neural network. Multimed Tools Appl 75(2):687–707CrossRefGoogle Scholar
  32. Vera-Rodriguez R, Fierrez J, Mason JS, Ortega-Garcia J (2013) A novel approach of gait recognition through fusion with footstep information. In: 2013 international conference on biometrics (ICB). IEEE, Madrid, pp 1–6Google Scholar
  33. Wang Y, Zhang K, Shark LK (2014) Personal identification based on multiple keypoint sets of dorsal hand vein images. IET Biom 3(4):234–245CrossRefGoogle Scholar
  34. Wu X, Gao E, Tang Y, Wang K (2010) A novel biometric system based on hand vein. In: 2010 fifth international conference on frontier of computer science and technology (FCST). IEEE, Changchun, pp 522–526Google Scholar
  35. Yu S, Tan D, Tan T (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th international conference on pattern recognition (ICPR), vol 4. IEEE, Hong Kong, pp 441–444Google Scholar
  36. Yuksel A, Akarun L, Sankur B (2011) Hand vein biometry based on geometry and appearance methods. IET Comput Vis 5(6):398–406MathSciNetCrossRefGoogle Scholar
  37. Zhang D, Wang Y, Zhang Z, Hu M (2012) Ethnicity classification based on fusion of face and gait. In: 5th IAPR international conference on biometrics (ICB). IEEE, New Delhi, pp 384–389Google Scholar
  38. Zheng S, Zhang J, Huang K, He R, Tan T (2011) Robust view transformation model for gait recognition. In: 18th IEEE international conference on image processing (ICIP). IEEE, Belgium, pp 2073–2076Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Parul Arora
    • 1
    Email author
  • Sandeep Bhargava
    • 1
  • Smriti Srivastava
    • 1
  • Madasu Hanmandlu
    • 2
  1. 1.Netaji Subhas Institute of TechnologyDelhi UniversityNew DelhiIndia
  2. 2.Indian Institute of TechnologyNew DelhiIndia

Personalised recommendations