Soft Computing

, Volume 21, Issue 3, pp 795–804 | Cite as

Distributed steganalysis of compressed speech

  • Hui TianEmail author
  • Yanpeng Wu
  • Yiqiao Cai
  • Yongfeng Huang
  • Jin Liu
  • Tian Wang
  • Yonghong Chen
  • Jing Lu
Methodologies and Application


In this paper, we present a distributed steganalysis scheme for compressed speech in voice-over-IP scenarios to provide fast and precise detection results. In this scheme, each speech parameter available for concealing information is designed to be detected independently exploiting the corresponding optimal detection feature. To achieve this purpose, we introduce four detection features, including histogram distribution, differential histogram distribution, Markov transition matrix and differential Markov transition matrix. These features stem from both long-time distribution characteristics and short-time invariance characteristics of speech signals. We evaluate their performance for steganalysis based on support vector machines with a large number of steganographic G.729a speech samples at different embedding rates or with various sample lengths and compare them with some existing algorithms. The experimental results demonstrate that the presented algorithms can offer excellent steganalysis performance for all speech parameters in any case and outperform the previous ones. Moreover, it is proved that the four features have diverse performance for steganalysis of different speech parameters, which suggests that it is feasible to achieve the distributed steganalysis employing the optimal feature to detect the corresponding parameter in a faster and more efficient manner.


Steganalysis Covert communication Steganography  Voice over IP Compressed speech 



This work was supported in part by Natural Science Foundation of China under Grant Nos. 61302094, U1405254, 61370007 and 61202468, Natural Science Foundation of Fujian Province of China under Grant No. 2014J01238, Education and Science Research Program for Young and Middle-aged Teacher of Fujian Province of China under Grant No. JA13012, Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University under Grant No. ZQN-PY115, Fundamental Research Funds for the Central Universities under Grant No. 14BS210 and Program for Science and Technology Innovation Teams and Leading Talents of Huaqiao University under Grant No. 2014KJTD13.


  1. Bao C, Huang Y, Zhu C (2006) Steganalysis of compressed speech. In: Proceedings of the international multi-conference on computational engineering in systems applications, vol 1. IEEE, pp 5–10. doi: 10.1109/CESA.2006.4281614
  2. Bai LY, Huang Y, Hou G, Xiao B (2008) Covert channels based on jitter field of the rtcp header. In: Proceedings of the 4th international conference on intelligent information hiding and multimedia signal processing. IEEE, pp 1388–1391. doi: 10.1109/IIH-MSP.2008.169
  3. Cai Y, Wang J, Chen Y, Wang T, Tian H, Luo W (2014) Adaptive direction information in differential evolution for numerical optimization. Soft Comput 1–30. doi: 10.1007/s00500-014-1517-0
  4. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27. doi: 10.1145/1961189.1961199 CrossRefGoogle Scholar
  5. Castiglione A, Santis AD, Soriente C (2007) Taking advantages of a disadvantage: digital forensics and steganography using document metadata. J Syst Softw 80(5):50–764CrossRefGoogle Scholar
  6. Castiglione A, D’Alessio B, Santis AD (2011a) Steganography and secure communication on online social networks and online photo sharing. In: Proceedings of 2011 international conference on broadband and wireless computing, communication and applications (BWCCA), Barcelona, Spain, October 2011, pp 363–368. doi: 10.1109/BWCCA.2011.60
  7. Castiglione A, Santis AD, Fiore U, et al (2011b) E-mail-based covert channels for asynchronous message steganography. In: Proceedings of 2011 fifth international conference on innovative mobile and internet services in ubiquitous computing (IMIS), Seoul, Korea, 30 June–2 July 2011, pp 503-508. doi: 10.1109/IMIS.2011.133
  8. Castiglione A, D’Alessio B, Santis AD et al (2011c) New steganographic techniques for the OOXML file format. In: Proceedings of 2011 IFIP WG 8.4/8.9 international cross domain conference and workshop, Vienna, Austria, August 2011, pp 344–358. doi: 10.1007/978-3-642-23300-5_27
  9. Castiglione A, D’Alessio B, Santis AD (2011d) Hiding information into OOXML documents: new steganographic perspectives. J Wirel Mobile Netw Ubiquitous Comput Dependable Appl 2(4):59–83Google Scholar
  10. Castiglione A, Santis AD, Fiore U et al (2012) An asynchronous covert channel using spam. Comput Math Appl 63(2):437–447. doi: 10.1016/j.camwa.2011.07.068 CrossRefGoogle Scholar
  11. Castiglione A, Pizzolante R, Santis AD, Carpentieri B, Palmieri F (2015) Cloud-based adaptive compression and secure management services for 3d healthcare data. Future Gen Comput Syst 1(43):120–134. doi: 10.1016/j.future.2014.07.001 CrossRefGoogle Scholar
  12. Dittmann J, Hesse D, Hillert R (2005) Steganography and steganalysis in voice-over IP scenarios: operational aspects and first experiences with a new steganalysis tool set. In: Proceedings of the SPIE 2005, security, steganography, and watermarking of multimedia contents VII, SPIE, vol 5681, pp 607–618. doi: 10.1117/12.586579
  13. Ding Q, Ping X (2010a) Steganalysis of compressed speech based on histogram features. In: Proceedings of the 2010 international conference on wireless communications, networking and mobile computing. IEEE, pp 1–4. doi: 10.1109/WICOM.2010.5600125
  14. Ding Q, Ping X (2010b) Steganalysis of analysis-by-synthesis compressed speech. In: Proceedings of the 2010 international conference on multimedia information networking and security, IEEE, pp 681–685. doi: 10.1109/MINES.2010.148
  15. Esposito C, Ficco M, Palmieri F, Castiglione A (2013) Interconnecting federated clouds by using publish-subscribe service. Clust Comput 16(4):887–903. doi: 10.1007/s10586-013-0261-z CrossRefGoogle Scholar
  16. Farhat F, Ghaemmaghami S (2015) Towards blind detection of low-rate spatial embedding in image steganalysis. IET Image Process 9(1):31–42. doi: 10.1049/iet-ipr.2013.0877 CrossRefGoogle Scholar
  17. Gianvecchio S, Wang H (2011) An entropy-based approach to detecting covert timing channels. IEEE Trans Dependable Secure Comput 8(6):785–797. doi: 10.1109/TDSC.2010.46 CrossRefGoogle Scholar
  18. Huang Y, Tang S, Zhang Y (2011a) Detection of covert voice-over Internet protocol communications using sliding window-based steganalysis. IET Commun 5(7):929–936. doi: 10.1049/iet-com.2010.0348 CrossRefGoogle Scholar
  19. Huang Y, Tang S, Bao C, Yip YJ (2011b) Steganalysis of compressed speech to detect covert voice over Internet protocol channels. IET Inf Secur 5(1):26–32. doi: 10.1049/iet-ifs.2010.0032 CrossRefGoogle Scholar
  20. Iovane G, Giordano P, Borysenko SD (2011) Image watermarking via wavelet approach and face biometrics. J Ambient Intell Hum Comput 2(2):91–101. doi: 10.1007/s12652-010-0031-1 CrossRefGoogle Scholar
  21. ITU-T Recommendation P. 862 (2001) Perceptual evaluation of speech quality (PESQ): an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs. International Telecommunications Union, Geneva, SwitzerlandGoogle Scholar
  22. Kräetzer C, Dittmann J (2007) Mel-cepstrum-based steganalysis for VoIP steganography. In: Proceedings of international society for optics and photonics, electronic imaging, SPIE, 650 505-650505-12. doi: 10.1117/12.704040
  23. Li S, Tao H, Huang Y (2012) Detection of quantization index modulation steganography in G. 723.1 bit stream based on quantization index sequence analysis. J Zhejiang Univ Sci C 13(8):624–634CrossRefGoogle Scholar
  24. Mazurczyk W (2013) VoIP steganography and its detection—a survey. ACM Comput Surv 46(2):20. doi: 10.1145/2543581.2543587 (article no. 20)CrossRefGoogle Scholar
  25. Mazurczyk W, Lubacz J (2010) LACK: a voip steganographic method. Telecommun Syst 45(2–3):53–163. doi: 10.1007/s11235-009-9245-y Google Scholar
  26. Miao R, Huang Y (2011) An approach of covert communication based on the adaptive steganography scheme on voice over IP. In: Proceedings of the 46th IEEE international conference on communications. IEEE, pp 1–5. doi: 10.1109/icc.2011.5962657
  27. Su Y, Huang Y, Li X (2006) Steganography-oriented noisy resistance model of G.729a. In: Proceedings of the 2006 multi-conference on computational engineering in systems applications. IEEE, pp 11–15. doi: 10.1109/CESA.2006.4281615
  28. Sadek MM, Khalifa AS, Mostafa MGM (2014) Video steganography: a comprehensive review. Multimed Tools Appl 1–32. doi: 10.1007/s11042-014-1952-z
  29. Tian H, Zhou K, Huang Y et al (2008) A covert communication model based on least significant bits steganography in voice over IP. In: Proceedings of the 9th international conference for young computer scientists. IEEE, pp 647–652. doi: 10.1109/ICYCS.2008.394
  30. Tian H, Jiang H, Zhou K, Feng D (2011) Adaptive partial-matching steganography for voice over ip using triple m sequences. Comput Commun 34(18):2236–2247. doi: 10.1016/j.comcom.2011.07.003 CrossRefGoogle Scholar
  31. Tian H, Guo R, Lu J, Chen Y (2012) Implementing covert communication over voice conversations with windows live messenger. Adv Inf Sci Serv Sci 4(4):18–26Google Scholar
  32. Wang J, Cai Y (2015) Multiobjective evolutionary algorithm for frequency assignment problem in satellite communications. Soft Comput 19(5):1229–1253. doi: 10.1007/s00500-014-1337-2 CrossRefGoogle Scholar
  33. Wang Y, Moulin P (2007) Optimized feature extraction for learning-based image steganalysis. IEEE Trans Inf Forensics Secur 2(1):31–45. doi: 10.1109/TIFS.2006.890517 CrossRefGoogle Scholar
  34. Wei Z, Zhao B, Liu B, Su J, Xu L, Xu E (2014) A novel steganography approach for voice over IP. J Ambient Intell Hum Comput 5:601–610. doi: 10.1007/s12652-013-0212-9 CrossRefGoogle Scholar
  35. Wu Z, Cao H, Li D (2015) An approach of steganography in G.729 bitstream based on matrix coding and interleaving. Chin J Electron 24(1):157–165CrossRefGoogle Scholar
  36. Zhao H, Shi YQ (2013) Detecting covert channels in computer networks based on chaos theory. IEEE Trans Inf Forensics Secur 8(2):273–282. doi: 10.1109/TIFS.2012.2231861 CrossRefGoogle Scholar
  37. Zielinska E, Mazurczyk W, Szczypiorski K (2014) Trends in steganography. Commun ACM 5(2):86–95. doi: 10.1145/2566590.2566610 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hui Tian
    • 1
    Email author
  • Yanpeng Wu
    • 1
  • Yiqiao Cai
    • 1
  • Yongfeng Huang
    • 2
  • Jin Liu
    • 1
  • Tian Wang
    • 1
  • Yonghong Chen
    • 1
  • Jing Lu
    • 3
  1. 1.College of Computer Science and TechnologyNational Huaqiao UniversityXiamenChina
  2. 2.Department of Electronic EngineeringTsinghua UniversityBeijingChina
  3. 3.Department of Information ManagementNational Huaqiao UniversityXiamenChina

Personalised recommendations